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Summary

The thalamus engages in attention by amplifying relevant signals and filtering distractors. Whether architectural features
of thalamic circuitry offer a unique locus for attentional control is unknown. We developed a circuit model of excitatory
thalamocortical and inhibitory reticular neurons, capturing key observations from task-engaged animals. We found that
top-down inputs onto reticular neurons regulate thalamic gain effectively, compared to direct thalamocortical inputs. This
mechanism enhances downstream readout, improving detection, discrimination, and cross-modal performance. The
model revealed heterogeneous thalamic responses that enable decoding top-down versus bottom-up signals. Spiking
activity from task-performing mice supported model predictions, with a similar coding geometry in auditory thalamus
and readout strategy in auditory cortex. Dynamical systems analysis explained why reticular neurons are potent sites
for control, and how lack of excitatory connectivity among thalamocortical neurons enables separation of top-down
from bottom-up signals. Our work reveals mechanisms for attentional control and connects circuit architectures to
computational functions.
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Introduction

Attention is a core cognitive function that involves flexible prioritization of sensory inputs. In an environment with multiple
stimuli or features, attentional modulation can enhance processing of selected sensory signals and filter out distractors in
a goal-directed manner. A growing experimental literature shows that selective attention engages subcortical structures
(Krauzlis et al., 2018), including the thalamus (Saalmann and Kastner, 2011; Halassa and Kastner, 2017). Within
sensory thalamic structures, glutamatergic thalamocortical (TC) neurons process and transmit information to cortex for
downstream computation. The thalamic reticular nucleus (TRN), which forms a thin capsule around thalamic nuclei,
contains GABAergic reticular (RE) neurons that provide inhibition onto TC neurons (Jones, 2012). In an influential
theoretical proposal, Crick (1984) hypothesized that selective attention could be implemented with the TRN acting as
an attentional “spotlight,” suggesting that “if the thalamus is the gateway to the cortex, the reticular complex might be
described as the guardian of the gateway.”

Studies in rodents, monkeys, and humans characterize sensory thalamus as a locus of attentional filtering under flexible
top-down control via the TRN (O’Connor et al., 2002; McAlonan et al., 2008; Ahrens et al., 2015; Wimmer et al., 2015;
Nakajima et al., 2019). Wimmer et al. (2015) recorded neuronal spiking activity from the visual TRN and lateral geniculate
nucleus (LGN) in mice trained on a cross-modal attention task, in which a cue informed of the subject of which sensory
modality (vision vs. audition) to attend to. TRN and LGN exhibited opposite modulations by attentional selection: when
vision was the attended modality, visual TRN decreased firing activity and LGN exhibited increased activity and higher gain
of stimulus response. Nakajima et al. (2019) found a pathway for this attentional control of thalamus, from the prefrontal
cortex through the basal ganglia’s inhibitory projections onto the TRN.

These convergent empirical findings raise key computational questions about the mechanisms and functions of attentional
control in thalamic circuits. At the mechanistic level of circuit computations, why the thalamus is as an effective locus
for attentional control, and why control via the TRN, compared to compared to direct projections to TC neurons, may
be more effective for regulation of thalamic processing are open questions. Furthermore, how downstream readout of
thalamic activity in cortex can parse bottom-up from top-down signals are also unknown.Computational modeling provides
a useful framework for understanding how neural circuit mechanisms can subserve cognitive functions. Thalamic reticular
dynamics such as oscillations have been modeled at the neuronal and microcircuit levels (Destexhe et al., 1993b; 1994;
1996; Wang et al., 1995; Bazhenov et al., 2000; Sohal et al., 2006). However, there has been relatively little biophysically
grounded modeling of thalamic reticular circuits in dynamical regimes consistent with neural recordings from alert behaving
animals, which could yield insight into the interplay of cellular and circuit mechanisms supporting attentional modulation.

To investigate these issues, we developed a biophysically grounded thalamic circuit model and studied how modulation by
top-down inputs can implement attentional control of stimulus processing. We found that this model, with circuit dynamics
constrained by experiments to operate in the regime of alert behaving animals, can capture key experimental observations
of thalamic activity and its modulation by attention. Dynamical systems analysis explains why RE neurons are an
especially potent site for top-down control, compared to TC neurons. The geometry of heterogeneous thalamic responses
makes predictions for downstream readout of information from the confluence of bottom-up and top-down signals, for
attentional enhancement of performance in detection, discrimination, and cross-modal task paradigms. Motivated by
model predictions, we examined spiking activity from auditory thalamus (ventral medial geniculate body [MGBv]) during the
two-alternative forced choice (2AFC) task featuring modality attention (Nakajima et al., 2019), and found the existence of
the similar coding geometrical structure. Analysis of spiking activity in primary auditory cortex (A1) during this task further
supports that thalamic gain modulation arise from local TC-RE circuit computations which can be effectively read out by
cortical circuits. Our sensitivity analysis reveals how dynamical and computational features depend on excitation-inhibition
balance. Finally, modeling shows that strong local recurrent excitation can impair downstream decoding of multiplexed
bottom-up and top-down signals, which suggests why thalamic circuits, lacking such recurrent excitation, is an effective

3



locus for attentional modulation. The model therefore provides theoretical insight into circuit mechanisms of attentional
control, parsimoniously captures a range of experimental observations, and makes experimentally testable predictions for
future studies of the thalamus’s role in cognitive function.

Results

Thalamic Reticular Circuit Architecture

In this study we developed a thalamic circuit model of attention which is parsimonious yet grounded in physiology and
anatomy of the system (Figure 1; see Methods). The model consists of a population of excitatory thalamocortical
(TC) neurons, and another of inhibitory reticular (RE) neurons. TC neurons receive stimulus inputs, from a particular
modality, and TC outputs are considered to project to downstream areas for readout and processing. RE neurons are
reciprocally connected to TC neurons but also receive external inputs, including top-down attentional signals. Various
forms of top-down inputs, mediating modality-selective attentional control signals, may also target TC neurons to modulate
circuit responses.

To enable modeling of thalamic circuit dynamics during attentional control, we first constrained our circuit model to operate
in a dynamical regime consistent with in vivo observations from alert behaving animals. Prior computational modeling
studies of TC and RE neurons primarily focused on neuronal dynamics observed in vitro, under anesthesia, or during
sleep, in which TC and RE neurons can intrinsically generate strong oscillations between bursting and hyperpolarization
(Wang et al., 1995; Destexhe et al., 1996; 1998; Bazhenov et al., 2002; Krishnan et al., 2016; Timofeev et al., 2020). In
contrast, spontaneous activity in the alert awake state is characterized by irregular, quasi-asynchronous spiking with only
intermittent bursting and lack of strong intrinsic oscillation (Bruno, 2006; Temereanca et al., 2008; Ramcharan et al., 2005;
Hirai et al., 2017; Bastos et al., 2014; Saleem et al., 2017). In addition, a strong and brief optogenetic depolarization of RE
neurons evokes a transient response involving increased probability of TC bursting and an oscillatory bout in the spindle
(7–15 Hz) frequency range (Halassa et al., 2011). Therefore, quasi-asynchronous spontaneous and evoked oscillatory
activity can characterize the alert awake dynamical regime of a thalamic reticular circuit and constrain model parameter
(Figure S1).

Using the circuit model in this operating regime, we sought to answer the following major questions: What are functional
differences between RE neurons and TC neurons as sites for top-down control? Can thalamic coding allow for attentional
gain control yet enable downstream decoding to distinguish bottom-up stimulus and top-down control? Is thalamic gain
modulation computed locally or inherited from cortical feedback? How would the architectural feature of thalamic lack of
recurrent excitation influence its engagement in attentional control? (Figure 1C).

Top-down Regulation of Thalamic Dynamics and Stimulus Processing

First, we sought to understand the effects of top-down control inputs and how they can implement attentional modulation
of stimulus processing. We first consider our thalamic reticular circuit of one modality with top-down inputs taking the form
of inhibition onto the RE neurons of the TRN, based on the basal ganglia pathway described by Nakajima et al. (2019)
(Figure 2A). We found that increasing the strength of top-down drive suppresses RE firing rates, and elevates TC firing
rates via disinhibition, which captures experimental observations when attention is directed toward the associated sensory
modality (Wimmer et al., 2015; Nakajima et al., 2019) (Figure 2A).
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Figure 1: Model architecture for attentional control of thalamic reticular circuits. (A) Conceptual schematic
of modality-selective attention. When receiving simultaneous stimulus inputs from multiple modalities (e.g., visual
and auditory) for processing in downstream cortical areas, top-down inputs onto thalamic structures can mediate
modality-selective attentional modulation of thalamic responses. (B) Thalamic circuit implementation of top-down
modulation on selective attention. Distinct populations of excitatory thalamocortical neurons (TC, red) receive stimulus
inputs from separate modalities and project their outputs to the cortex. Each population of TC neurons is reciprocally
coupled to an associated population of inhibitory thalamic reticular neurons (RE, blue). To implement attentional control,
top-down inputs to RE or TC neurons modulate thalamic outputs to the cortex, e.g., through amplification of stimulus
signals from an attended sensory modality or suppression of those from a distractor modality. (C) Circuit mechanisms
for top-down attentional modulation. Major topics of study here include roles of heterogeneous of population coding for
bottom-up and top-down signals in thalamus; differential potency of RE vs. TC cells as sites for top-down inputs; and
inter-regional communication between thalamus and downstream cortical circuits.
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Figure 2: Top-down modulation via RE neurons, in contrast to TC neurons. (A) Schematic of top-down inhibition
to RE neurons modulating thalamic response to stimulus input, with different top-down modulation strengths (dark for
strong, light for weak). (B) Circuit response function, i.e. TC firing rate as a function of stimulus strength, under different
strengths of top-down modulation. (C) Detection accuracy of a downstream decoder, which is based on a linear support
vector machine (SVM) and operates on thalamic output firing-rate patterns. (D–F) Same as (A–C), but with top-down
modulation via excitation to TC neurons instead of RE. (G) RE baseline activity as a function of top-down modulation
strength, for inhibition to RE or excitation to TC. To facilitate comparison between RE vs. TC modulations, top-down
modulation strength is parameterized in terms of its net effect on TC baseline firing rate. Black dot denotes the control
circuit. (H) Response gain as a function of top-down modulation strength. Response gain is defined as the slope of the
TC response as a function of stimulus amplitude (from B and E). (I) Sensitivity of detection accuracy as a function of
top-down modulation strength. Sensitivity is defined as the slope of the initial part of the accuracy curve (from C and F).
Top-down modulation via RE neurons has a larger effect on gain and sensitivity than via TC neurons.
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In addition to its effects on baseline activity, top-down inhibition of RE boosted the TC response to bottom-up stimulus
inputs (Figure 2B). The TC response is a quasi-linear function of stimulus input amplitude, and strengthening the top-down
input increases the gain of TC response (i.e., its slope as a function of stimulus amplitude). This increase in thalamic
response gain by attention is also in line with experimental observations (Wimmer et al., 2015; Nakajima et al., 2019;
McAlonan et al., 2008; O’Connor et al., 2002). Can this increase in TC response gain enhance downstream readout of the
stimulus, for attentional improvement in behavior? To examine such questions, we built a decoder for stimulus detection,
using the linear support vector machine (SVM) classifier framework, which is trained on the firing levels across the TC
population (see Methods). We found that top-down modulation greatly improves detection accuracy through greater
sensitivity (Figure 2C). These findings link top-down modulation of RE to increased TC response gain and improved
downstream readout for psychophysical behavior.

Reticular vs. Thalamocortical Neurons as Sites for Top-Down Control

Are RE and TC populations similarly potent sites for thalamic regulation by top-down inputs? As an alternative to
disinhibition of TC via RE neurons, which indirectly modulates TC response gain as shown above, top-down excitatory
inputs (e.g., from cortex) could directly project to TC neurons to modulate their activity (Briggs and Usrey, 2008; Béhuret
et al., 2015). We found that elevating top-down excitation to TC neurons can strongly increase the baseline firing rate of
TC neurons (Figure 2D). RE neurons exhibited a weak increase in baseline firing rate, in contrast to the strong decrease
induced by top-down inhibition to RE (Figure 2A, D and G). RE vs. TC as candidate sites for top-down input are therefore
dissociable in their effects on baseline RE activity (Figure 2G), and RE neurons as the primary site is consistent with
experimental findings from Wimmer et al. (2015) and Nakajima et al. (2019).

Remarkably, top-down input to TC neurons exerted only a very weak effect on response gain, compared to top-down
input to RE neurons (Figure 2B, E and H). Top-down input to TC neurons had a correspondingly weak effect on detection
accuracy from the downstream SVM decoder (Figure 2C, F and I). Response gain and detection sensitivity increase
monotonically with top-down modulation strength (Figures 2H-I and S2). Response gain and detection sensitivity were
both much more potentially regulated by top-down input to RE neurons than top-down input to TC neurons (by factors of
6.8 and 3.6, respectively).

We also investigated a second canonical task paradigm, categorical discrimination, wherein the subject must distinguish
which of two stimuli is presented. To study this paradigm, we introduced two stimulus patterns as inputs to the circuit,
defined as two Gaussian-tuned inputs which partially overlap in their projections onto TC neurons (Figure S3A). Here,
the top-down input onto the RE population is non-specific and unstructured, and therefore is not informed by the stimuli or
discrimination boundary. To characterize the impact of top-down attentional modulation on downstream readout we trained
an SVM decoder for stimulus classification (see Methods). Overall, we found that top-down modulation has a similar effect
on discrimination as on detection. Top-down modulation via RE improved discrimination performance (Figure S3B), and
was more effective, compared to TC, at enhancing discrimination sensitivity (Figure S3C).

Dynamical Systems Analysis of Reduced Mean-Field Model

The above results reveal that RE neurons are more potent sites for top-down control of response gain, relative to TC
neurons, with corresponding impact on downstream readout of stimulus signals. To understand the dynamical circuit
mechanisms underlying this differential sensitivity to RE vs. TC modulation, we developed and analyzed a reduced
mean-field model of the thalamic reticular circuit. This reduced model comprises two dynamical variables representing
the aggregate activity levels of the RE and and TC populations. The response gain of the circuit is an emergent property
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Figure 3: Mean-field analysis of gain control by top-down inputs. (A) Schematic of mean-field firing-rate circuit
model, with TC and RE activity as two dynamical variables. Top-down (TD) inhibition to RE (TD→RE) or excitation to
TC (TD→TC) modulates the circuit state. (B) Neuronal input-output transfer functions. Parameters were fit to simulated
spiking data from the TC and RE single-neuron models (dots). (C) Efects of TD→RE and TD→TC modulation on circuit
response gain. TD→RE vs. TD→TC pathways are compared by setting top-down strengths to have the same TC baseline
firing rate (as shown in D). For ease of comparison, changes in response gain are normalized by that induced by TD→RE.
TD→RE increases response gain more than TD→TC. (D) Phase-plane analysis showing nullclines of TC (red) and RE
(blue) firing rates. Solid lines represent nullclines under top-down modulation. Intersections of nullclines are steady-state
fixed points of the circuit (black for control, green for TD→RE, and orange for TD→TC). The small grey arrows represent
the vector field for activity flow in the control state. (E) Circuit response gain as a function of TC and RE firing rates. (F)
TC neuronal sensitivity, i.e. the slope of the TC neuronal transfer function, as a function of TC firing rate under top-down
modulation via RE (left) or TC (right). Both top-down modulations can increase TC activity and its neuronal sensitivity at
the similar level. (G) RE neuronal sensitivity as a function of firing rate, under top-down inputs to RE (left) or TC (right).
TD→RE decreases RE firing rate (left) whereas TD→TC increases RE firing rate (right), resulting in distinct gain effects.
Top-down inputs drive the circuit state from the black dot to colored dots.
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that is shaped by the interplay between the neuronal sensitivities and the feedback inhibition loop created by TC-RE
interconnections (Figure 3A). Each neural population is governed by a neuronal transfer function describing the output
firing rate as a function of the input current (commonly called an f-I curve), whose shape follows an expansive nonlinearity
(Figure 3B). Neuronal and synaptic parameters were fit to, or derived from, the spiking circuit model (see Methods).

We found that the reduced mean-field model exhibits key properties of the spiking circuit, including that RE neurons
are a more potent site for top-down regulation of response gain, compared to TC neurons (by a factor of nearly two,
Figure 3C). The steady-state TC and RE activity levels under specific inputs into the circuit. As in the spiking circuit,
top-down input via TC vs. RE neurons produces dissociable changes in the firing rates of RE neurons, which reflects the
non-inhibition-stabilized regime (Ozeki et al., 2009; Litwin-Kumar et al., 2016) (Figure 3D).

The analytical tractability of the reduced model allows calculation of the circuit response gain as a function of TC and
RE activity levels. Top-down input onto RE, compared to TC, shifts the circuit to a state of higher response gain (Figure
3E). The mechanistic basis of this difference is revealed by the analytical expression for response gain (Equation 16 in
Methods) with dependence on the RE and TC neuronal sensitivities, i.e., the slopes of the neuronal input-output transfer
functions (Figure 3B): response gain increases with higher TC neuronal sensitivity (and firing rate), and decreases with
higher RE neuronal sensitivity (and firing rate). TC neuronal sensitivity is increased by top-down input to RE or to TC
(Figure 3F). With top-down inhibition to RE, RE neuronal sensitivity decreases (Figure 3G left), which in turn boosts
response gain. In contrast, with top-down excitation to TC, RE neuronal sensitivity increases (Figure 3G right), which in
turn lowers response gain and counteracts the contribution from TC sensitivity. These analyses thereby give insight into
how the interplay of neuronal and circuit properties give rise to the differential potency of RE as a site for top-down control
of thalamic gain.

Downstream Decoding via Heterogeneous Population Activity

As shown above in the spiking circuit, top-down modulation via RE neurons improves performance of a downstream
decoder trained for stimulus detection (Figure 2C, I). We next investigated the population coding principles by which
downstream readout can be facilitated by top-down modulation of distributed TC response patterns. The decoder
we implemented is a linear support vector machine (SVM) trained on the patterns of firing-rate activity across the
heterogeneous population of 1000 TC neurons (Figure 4A) (see Methods). The population-activity decoder can be
viewed geometrically as a classifier hyperplane in the high-dimensional space of neuronal activity (Figure 4B). To
examine whether a distributed code across heterogeneous neurons is important for decoding, we also considered a
second decoder whose input is only the mean firing rate averaged across the TC population.

We first varied the top-down strength and characterized its impact on different types of errors in the detection task. From
signal detection theory, decoder errors can be decomposed in false alarms (i.e., responding ‘yes’ when the stimulus
was absent) and misses (i.e., responding ‘no’ when the stimulus was present) (Figure S4A). The decoder based on
population-averaged activity exhibited a sharp tradeoff between misses and false alarms as attentional strength varied
(Figure 4D), in a manner consistent to classic signal detection theory. This tradeoff arises in the population-averaged
decoder because stimulus input and top-down modulation both increase population averaged activity (Figure 4E).
Remarkably, we found that strengthening top-down modulation reduced both types of errors for the decoder based on
heterogeneous population activity patterns (Figure 4C). Under stronger top-down modulation, TC baseline activity is
elevated yet there is decreased probability of downstream misclassification of that activity pattern as stimulus presence.
These findings show that the improvement in downstream readout due to modulation of a distributed code across TC
neurons, rather than their aggregate activity level.

To gain further insight into the neural coding principles for attentional enhancement of performance, we examined

9



Decoder reports
stim on

Decoder reports
stim off

RE

...

...
Top-down

Stimulus
TC1 TC2

TC3

Output

r1

r2

r3

D
ecoder

Population activity

rpop=
1
N

N

i=1

ri

D
ecoder

Population-averaged
activity

Population activity decoding

Shaded plane separates
stimulus on vs.off

r1

r2

r3

Control

Stimulus
no top-down

Top-down
no stimulus

Stimulus
and top-down

rN...

input

modulated 
input

separatrixdecoder 

Top-down inhibition

S
im

ila
rit

y 
to

Figure 4: Downstream decoding utilizes heterogeneous population activity patterns for detection. (A) Schematic
of readout via population decoders. Heterogeneity of circuit properties leads to inter-neuronal variation in net input to TC
neurons from bottom-up stimulus and top-down (mediated by RE) pathways. Stimulus on vs. off conditions be decoded
from high-dimensional TC population activity patterns (top), or alternatively via the mean activity (rpop) averaged over the
TC population (bottom). Here decoders are implemented as linear support vector machines (SVMs). (B) Schematic of
population-activity decoding in the detection paradigm. The SVM decoder corresponds to a hyperplane separatrix that
maps activity patterns on each side of the hyperplane to “stimulus on” vs. “stimulus off” reports. (C) For the heterogeneous
population activity decoder, top-down modulation via RE improves detection performance by reducing error rates for both
misses and false alarms. Misses vs. false alarms are error types when the stimulus was on vs. off, respectively. TC
baseline activity serves as a proxy for top-down modulation strength (D) The population-averaged activity decoder exhibits
a trade-off between miss and false alarm rates, as top-down strength is varied. (E) TC population firing rate (rpop) as a
function of bottom-up stimulus amplitude and top-down strength. Both factors increase rpop in a similar manner, explaining
poor performance of the population-averaged decoder. (F) Geometric relationships among coding and decoding axes in
TC activity space. Shown are regression weight vectors for bottom-up stimulus (!β BU), top-down modulation (!β TD), and
their interaction (!β BU×TD), in the 3-dimensional subspace spanned by !β BU, !β TD, and the SVM decoder weight vector !β Dec

(see Methods). (G) Projections of !β BU, !β TD and !β BU×TD onto !β Dec. !β Dec has a positive alignment with !β BU and !β BU×TD,
and a weak negative alignment with !β TD. Top-down modulation via RE improves detection performance mainly through
gain modulation, evident from the strong positive alignment of !β Dec with !β BU×TD. (H) The average SVM score (i.e., the
projection of the circuit activity onto !β Dec), as a function of top-down strength, when the stimulus is present or absent.
Top-down modulation shifts scores for both conditions away from the classifier boundary at 0, leading to reduced rates of
misses and false alarms (in C).
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geometric relationships of coding axes in the high-dimensional space of TC activity patterns (Figures 4F–H, S4). The
weight vector of the SVM decoder defines an axis in activity space, perpendicular to the classifier hyperplane, that assigns
a score to each activity pattern by its projection along the decoder axis. In addition, we used regression analysis to define
other weight vectors related to three aspects of TC activity: (i) bottom-up, reflecting the stimulus; (ii) top-down, reflecting
the influence of the attention signal itself; and (iii) the interaction of bottom-up and top-down, reflecting attentional gain-like
modulation of stimulus representations.

As expected, the bottom-up weight vector has a positive cosine similarity with the decoder axis, so that stronger stimuli
increase decoder scores (Figure 4F–H). Interestingly, the top-down weight vector has a weak negative cosine similarity
with decoder axis. In the absence of bottom-up stimulus, stronger top-down modulation thereby yields stronger negative
decoder scores, which reduces false alarms. Finally, the bottom-up–top-down interaction weight vector has a strong
cosine similarity with the decoder axis. Gain-like modulation by top-down signals thereby increases decoder scores
during stimulus presentation, which reduces misses. These functional analyses reveal how top-down modulation can
increase the separability of TC activity patterns for stimulus on vs. off conditions to improve behavioral performance.
These geometric properties also provide predictions for analysis of empirical TC spiking activity during attentional tasks.

Attentional Filtering of Distractors to Prevent Interference

In the following, we considered the important attentional function of flexibly regulating stimulus processing across multiple
sensory modalities according to task demands (Figure S3). In this study, we specified two stimulus modalities, with one
as the target for attention, and the other as a distractor. The stimulus for each modality is sent to a separate TC-RE
circuit (i.e., signals for two modalities enter separate thalamic nuclei and associated TRN regions). To apply attentional
control, RE neurons for the attended modality will be strongly inhibited by top-down input, while RE neurons for the
unattended modality will be only weakly inhibited. This allows the signal from the attended modality to be amplified, and
that from the unattended modality to be suppressed. Here we controlled the attentional bias by parametrically varying
the top-down strength to the distractor modality. Importantly, the stimuli from the two modalities can be congruent, such
that both stimuli consistent in their mapping to a response, or they can be incongruent, such that the two stimuli map
to opposing responses (Ahrens et al., 2015; Wimmer et al., 2015). We found that in the cross-modal paradigm, the
circuit model demonstrates higher discrimination accuracy for congruent trials than for incongruent trials (Figure S3H-I).
Strong attentional bias dramatically improves performance on incongruent trials, because the distractor stimulus signal
is suppressed and filtered out relative to the target signal. This filtering also attenuates the performance benefit from
the distractor in congruent trials. Attentional bias results in a performance tradeoff, although congruent trials still have
higher sensitivity than incongruent trials and the net effect of attentional bias in improved performance. These findings
suggest top-down modulation can implement flexible cross-modal filtering out of irrelevant signals to prevent interference
with contextual behavior based on attended signals.

Sensitivity Analysis of Biophysical Perturbations

How are circuit dynamics and computations shaped by neuronal and synaptic properties? We performed a sensitivity
analysis on the spiking circuit model, measuring how strongly a circuit feature is changed by a small perturbation of a
given parameter. This analysis characterizes along which directions in parameter space the circuit features are sensitive
or robust, how different parameters could compensate for perturbations, which features are sensitive or robust, and
how features covary under perturbation. Specifically, we perturbed 6 biophysical parameters (4 synaptic and 2 cellular)
(Figure S5A), and measured 7 features (3 dynamical and 4 task-computational), generating a feature sensitivity matrix
(Figure S5B). Averaging across all features, the RE-specific parameters generated greater feature sensitivities than did
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TC-specific or synaptic parameters (Figure S5B top). In further analysis using singular vector decomposition (SVD, see
Methods), we found that that the circuit’s sensitivity to perturbations is approximately one-dimensional (Figure S5C),
and TC- and RE-related perturbations have opposite-sign scores, with synaptic perturbations at intermediate scores
(Figure S5D). These findings revealed that the dominant mode of sensitivity can be characterized as capturing alteration
in excitation-inhibition balance.

Geometrical Relationships of Population Coding in Recordings from Auditory Thalamus

As described in the above sections, our circuit model makes predictions for population coding of bottom-up and top-down
signals in sensory thalamus during attentional tasks. Motivated by these model predictions, we trained animals on the
cross-modal divided attention task which we had previously described (Wimmer et al., 2015; Nakajima et al., 2019).
Briefly, on each trial, an animal was presented with a cue (100 msec of high pass or low pass noise burst) which indicated
which one of two target modalities (vision vs. audition) to select. Following a 500-700 msec delay period, a light flash
and auditory sweep were simultaneously presented. The light flash location signaled the appropriate port to collect the
reward on attend to vision trials, whereas an up- or down-sweep indicated whether the right or left port was the reward
location on attend to audition trials (Figure 5A). Following training to criterion (see Methods), animals were implanted
with multi-site multielectrode arrays targeting the auditory thalamus (ventral medial geniculate body [MGBv]) and primary
auditory cortex (A1).

In this task, we had previously found that MGBv neurons exhibit a preference toward a specific auditory stimulus (up-
versus down-sweep) (Nakajima et al., 2019). In order to relate these empirical MGBv recordings to model predictions in
detection paradigms, we grouped the firing activities of preferred stimulus and the firing activities of nonpreferred stimulus
for all MGBv cells at the two attentional conditions. The firing patterns of the preferred stimulus were used to mimic
stimulus-on trials, whereas those of nonpreferred stimulus were used to mimic stimulus-off trials. As shown in Figure
5C, the firing activities of MGBv neurons showed a stronger response during attend to audition trials. The response gain,
quantified here as the difference between evoked responses to preferred and nonpreferred stimuli, were also larger when
the attention was directed toward audition (Figure 5D). Higher SVM decoder accuracy indicates that MGBv neurons
emitted spikes that were more informative of these targets during the attend to audition compared to attend to vision
(Figure S6A). Further analysis revealed that attentional improvement in decoding accuracy was due to reduction of both
miss and false alarm error types (Figures 5E, S6B-C). The findings are consistent with our model predictions (Figure
4C), in that the decoder can distinguish between firing-rate increases due to bottom-up stimuli and those from top-down
attentional modulation.

We next calculated population coding axes in the empirical MGBv spiking activity, using the regression modeling
framework applied to circuit model, to obtain the bottom-up, top-down, and interaction coding directions as weight vectors
in population state space. The geometrical relationships between different weight vectors were found to be consistent
between MGBv recordings and our circuit model results (Figure 5F-I). Specifically, the bottom-up and interaction weight
vectors have positive similarities with the decoder vector, whereas the top-down weight vector has a negative similarity
(Figure 5F-G). As shown in the model (Figure 4F-H), this negative similarity of the top-down vector enables attention to
reduce false alarms by decreasing the decoder score when stimulus is absent, while positive similarity of the interaction
vector enables attention to reduce misses by increasing the decoder score when stimulus is present.

12



-3.16 Bregma

A1

MGBv

rule presentation

low-pass:attend to vision

high-pass:attend to audition

target presentation

down-sweep: left
up-sweep: right

response
(100 ms stimulus)(100 ms cue)

delay
(500 ms)

Figure 5: Geometrical coding properties in auditory thalamus (MGBv) recordings. (A) Schematic of cross-modal
sensory selection task. After self-initiation, freely behaving mice are cued by either high-pass or low-pass noise, which
correspond to two rules, “attend to vision” or “attend to audition”, respectively. Following a 500-ms delay, two sensory
targets — 100 ms of a visual flash and auditory sweep — are simultaneously presented to indicate the rewarded
port location for the cued modality. (B) Schematic of multi-electrode drive targeting auditory thalamus (ventral medial
geniculate body [MGBv]) and primary auditory cortex (A1). (C) Normalized firing rates averaged across all MGBv neurons
(n=52 neurons from 2 mice). Top-down attention to the associated modality, audition, increases spiking activity to preferred
stimuli more than to nonpreferred ones. The gray bar indicates stimulus presentation. Shaded areas show standard error
of mean (s.e.m.). (D) Distribution across MGBv neurons of the relative change of evoked activity difference between
audition and vision attentional conditions. The relative difference is defined as the firing rate change for “attention to
audition” minus that for “attend to vision”, normalized by that for “attend to vision". The firing rate change was calculated
as the response to preferred stimulus minus that to non-preferred. Attention to audition increases difference between
preferred and nonpreferred stimuli (Wilcoxon test, p<0.001). (E) Error proportion as a function of attended modality for the
SVM decoder. Both misses and false alarm errors were reduced when the attention directed to the corresponding sensory
modality. (F,G) Cosine similarity between the decoder and regression weight vectors obtained from model simulations (F)
and MGBv recordings (G), which are similar to each other and consistent with results in Figure 4G. (H,I) The similarity
between the upper triangular cosine similarity matrix (which characterizes relative orientations of each vector) from model
simulations (H) and MGBv recordings (I) is 0.77.
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Coding Properties in Primary Auditory Cortex

In addition to our analysis of recordings from MGBv, we examined the coding properties of A1, the sensory cortical area
directly downstream of MGBv. Comparative analysis of A1 with MGBv enabled us to investigate two main issues. First,
because MGBv receives corticothalamic feedback projections from A1, it is an open question whether attentional gain
modulation of thalamic activity is computed locally within thalamus, as proposed by our circuit model mechanisms, or
instead whether the gain modulation could be inherited from activity in A1 (Figure 5A). Second, our SVM analyses of
model and empirical MGBv activity suggest how downstream decoding from thalamus could separate bottom-up from
top-down signals, and signatures of such a readout mechanism can be tested in A1 activity.

As with MGBv, A1 neurons showed to have higher firing rates when attending to audition (Figure 6B). In order to
investigate differences between MGBv and A1 neurons in attentional gain modulation, we calculated the gain modulation
factor as the interaction term divided by the bottom up term from the regression model, which captured the attentional
effect on the bottom-up strength. We characterized the time courses of gain modulation in MGBv and A1, and found
earlier gain modulation in MGBv than in A1 (Figure 6C–D). These timing results appear inconsistent with gain modulation
in MGBv being inherited from A1, and suggest that thalamic gain modulation results from the local TC-RE circuit
computations rather than cortical feedback, at least for this particular task (Figure 6A).

We next further analyzed the peri-stimulus-time histograms (PSTHs) of A1 and MGBv during stimulus presentation. We
examined how neuronal activity in A1 was related to that in MGBv, using regression-based approaches (Semedo et al.,
2019; 2020; Keeley et al., 2020) (Figure 6E, see Methods). Specifically, we calculated the mapping weights to reconstruct
each A1 neuron’s PSTH from those of MGBv neurons under different conditions. Each A1 neuron’s weight vector can be
thought of as effective readout weights from MGBv for that A1 neuron. We found that weight vector of each A1 neuron
and the SVM weight vector from MGBv firing activity had a positive cosine similarity (Figure 6F). Moreover, the weight
vector of each A1 neuron has significant positive, negative and positive cosine similarity with the bottom-up, top-down and
interaction vector, respectively (Figure 6G). The signs of these cosine similarities are preserved when incorporating time
lags, or using Poisson generalized linear model (Figure S6D–G). The relationships are consistent with those among the
SVM weights and the three coding axes in MGBv firing activities and predicted by our model (Figure 5F–I). Therefore,
these results support the plausibility of such a decoding axis from MGBv to A1, through which neurons can distinguish
bottom-up from top-down signals.

Effects of Recurrent Excitation on Population Coding

A distinctive characteristic of thalamic microcircuitry is the lack of recurrent excitatory synaptic connections among TC
neurons (Jones, 2012), in contrast to highly recurrent cortical circuits (Ozeki et al., 2009; Sanzeni et al., 2020) . Here
we extended our models to investigate how recurrent excitation affects population coding of bottom-up and top-down
signals, and how this impacts downstream decoding (Figure 7A). We considered a thalamo-reticular circuit consisting of
large number of heterogeneous rate units matched to the spiking model (see Methods). We parametrically varied the
strength of recurrent excitation among TC neurons, and found that the similarity between bottom-up or top-down coding
axes (BU-TD similarity) increases when with stronger recurrent excitatory coupling JEE (Figure 7B). Increasing recurrent
excitatory coupling strength JEE can thereby reduce separability of BU and TD signals in the TC population. Empirical
analysis of MGBv and A1 recordings revealed results consistent with this model prediction: A1 neurons have a higher
BU-TD similarity than MGBv neurons (Figure 7C). In addition, we applied an SVM decoder to the model and found higher
decoding accuracy when recurrent excitation is weaker (Figure 7D). These results suggest functional advantages for
thalamus, lacking recurrent excitation, as a locus for top-down attentional control. They further highlight a unique aspect
of a modeling approach when, to our knowledge, the ability to experimentally introduce recurrent excitation to the intact
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Figure 6: Coding properties of primary auditory cortex compared to thalamus. (A) Schematic of the auditory
thalamo-cortical loop. Gain modulation of thalamic activity could be generated within the thalamic circuit, or potentially
reflect gain modulation generated within downstream sensory cortex which is transmitted via cortico-thalamic feedback
connections (dashed line). (B) Normalized firing activity averaged across all A1 neurons (n=25 neurons from 2 mice).
The horizontal bar indicates stimulus presentation. (C,D) Average gain modulation factor of MGBv and A1 neurons over
time. Significant increase of the A1 gain modulation factor was later than the that of MGBv neurons, indicating that gain
modulation in MGBv is not primarily inherited from A1. The shaded area represents s.e.m. (E) Schematic of mapping
from source MGBv activity to target A1 activity. Filled triangles indicate active neurons. Mapping weights !β MGBv→A1 were
obtained by a linear regression approach (see Methods). (F,G) Cosine similarity of the mapping weights from MGBv
to A1 neurons to the decoder axis and three coding axes (from Figure 5G). Mapping weights have a positive similarity
with the decoder axis (F). Meanwhile, mapping weights have a positive, negative, and positive similarity with bottom-up,
top-down, and interaction axis, respectively (Mann-Whitney U test, decoder: p<0.001; bottom-up: p<0.001; top-down:
p=0.025; interaction: p<0.001) (G).
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Figure 7: Recurrent excitation degrades separability of population coding of bottom-up and top-down signals.
(A) Schematic of TC activity space. Recurrent excitation among TC neurons (JEE) affects the similarity, and separability,
of bottom-up (BU) and top-down (TD) signals in TC population activity. Lower separability of BU and TD representations
is reflected in higher similarity of their coding axes with a smaller angle between them. (B) Relative change of BU-TD
similarity, and the angle between BU and TD coding axes, as a function of recurrent coupling strength JEE among TC
neurons. Increasing recurrent excitation increased the similarity, and reduced the angle, between BU and TD coding
axes. (C) Empirical characterization of BU-TD similarity in MGBv and A1 recordings (n=52 MGBv neurons and n=25 A1
neurons, from 2 mice). Error bars denote standard error calculated by jackknife procedure. BU-TD similarity was higher in
A1 than in MGBv (t-test, p<0.001). (D) Detection accuracy in the model, from an SVM decoder, as a function of recurrent
coupling strength JEE. Detection accuracy decreases when increasing recurrent excitation strength (darker lines denote
stronger background noise, with unit µA/cm2).
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biological thalamus is not possible.

Discussion

In this study, we developed a biophysically grounded, yet parsimonious, model of a thalamic circuit, which is constrained
by experimental findings to operate in the dynamical regime observed in alert behaving animals. The circuit model
captures a number of key experimentally observed phenomena related to the thalamus and attention, including gain-like
modulation of responses controlled by top-down control signals. Attentional modulation resulted in improved performance
for downstream readout in detection, discrimination, and cross-modal task paradigms, with heterogeneity of thalamic
response being critical for downstream decoding. Dynamical systems analysis reveals mechanisms by which the inhibitory
TRN acts a preferentially potent site for attentional control. Sensitivity analysis revealed excitation-inhibition ratio as a
key effective parameter governing thalamic activity and attentional modulation. Moreover, analyses on MGBv and A1
recordings verified the probable existence of these coding axes. It also suggests the gain modulation in thalamus may
result from the local thalamic interaction, with few contributions from the corresponding cortico-thalamic neurons. Finally,
our numerical results have shown that increasing the recurrent excitation can amplify the similarity between the activities
induced by the bottom-up stimulus and top-down attentional input.

Gain modulation of neuronal responses can be found across cortical and subcortical brain areas and is associated with
various cognitive functions including attention (Ferguson and Cardin, 2020). In different circuits, gain control may be
mediated by mechanisms such as synaptic noise (Ly and Doiron, 2009), active dentrites (Mehaffey, 2005) and diversity
of interneuron populations (Litwin-Kumar et al., 2016). That the thalamic gain is more potently regulated by top-down
modulation of RE neurons in the TRN, compared to direct modulation of TC neurons, is a key finding from our model.
Interestingly, disinhibitory motifs are also prominent in neocortical microcircuits, and this computational principle may
support contextual modulation of cortical state and response gain (Kepecs and Fishell, 2014; Fu et al., 2014; Litwin-Kumar
et al., 2016; Yang et al., 2016).

Heterogeneity of thalamic activity patterns plays a critical role for attentional modulation to enhance downstream readout of
stimulus information. Because both bottom-up and top-down inputs increase TC mean firing rates, readout of aggregate
activity cannot disambiguate stimulus from attention signals. In the heterogeneous spiking circuit model, TC neurons
are differentially responsive to bottom-up stimulus, top-down modulation, and their gain-like interaction, which allows
downstream readout to harness attentional gain modulation to improve performance in detection and discrimination
paradigms. These features could not be captured in homogeneous or mean-field models of thalamus (Roberts and
Robinson, 2012; Jaramillo et al., 2019). Importantly, we found similar geometrical relationships of coding axes in the
model and in empirical MGBv neurons. However, note that, the tasks from which we obtained the MGBv recordings
did not vary stimulus difficult near psychophysical thresholds as in typical detection paradigms (Nakajima et al., 2019).
To more fully test the model predictions, future experiments should record from thalamus during cross-modal detection
tasks that manipulation stimulus magnitudes and attentional states. Interestingly, the model shows degraded separability
of multiplexed bottom-up and top-down signals, with impaired downstream decoding, if strong recurrent excitation is
included, which suggests an advantage of thalamus, compared to cortex, as an effective target for top-down control.

The circuit model developed here is parsimonious, including key biophysical elements, and provides opportunities for
extension to address additional neurobiological questions in future computational studies. For instance, models can be
extended to incorporate the rich diversity of short-term synaptic plasticity dynamics at their inputs and local synaptic
connections (Sherman, 2012; Usrey et al., 1998; Crandall et al., 2015). Furthermore, the TRN contains subcircuits
involving distinct inhibitory cell types with different neuronal and synaptic properties (Ahrens et al., 2015; Clemente-Perez
et al., 2017; Li et al., 2020; Martinez-Garcia et al., 2020). The model can also be extended to study regional specialization

17



of TC-RE microcircuitry, which exhibits a sensory-to-higher-order hierarchical organization (Phillips et al., 2019; Wei et al.,
2011; Li et al., 2020; Martinez-Garcia et al., 2020).

Our sensitivity analysis characterized excitation-inhibition balance as a key effective parameter regulating thalamic
dynamics and computation, with preferential sensitivity to perturbations involving RE neurons. The TRN has emerged
as a key site of vulnerability associated with neurodevelopmental disorders and as a target for therapeutics (Krol et al.,
2018; Huguenard and McCormick, 2007; Fagerberg et al., 2014; Ritter-Makinson et al., 2019; Ahrens et al., 2015; Wells
et al., 2016). Incorporation of additional biophysical processes in the model will likely be important for simulating effects
of disease and pharmacology, to link cellular and synaptic perturbations to deficits in perceptual and cognitive functions.

Finally, future studies should incorporate biophysically grounded models of thalamus into large-scale brain models of
cognitive functions such as attentional control and decision making. The present circuit model can be embedded in
networks with long-range interactions involving thalamic, cortical and basal ganglia circuits, to gain further insight into the
distributed computational mechanisms of attentional function (Saalmann and Kastner, 2011; Sherman, 2016; Halassa and
Kastner, 2017; Nakajima and Halassa, 2017; Rikhye et al., 2018; Schmitt et al., 2017; Krauzlis et al., 2018). Our present
study thereby provides a foundation for future computational modeling of cognitive functions involving the interactions of
thalamic reticular circuits and other brain circuits.
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Methods

Spiking Circuit Model

The thalamic circuit model consists of NTC = 1000 excitatory thalamocortical (TC) neurons and NRE = 1000 inhibitory
reticular (RE) neurons. TC and RE neurons are interconnected through sparse and random synaptic projections,
without projections between neurons of the same cell type, with probability of connection pTC→RE = pRE→TC = 0.01
and pTC→TC = pRE→RE = 0 (Jones, 2012; Hou et al., 2016). Both TC and RE neurons receive external excitatory
inputs, and RE neurons additionally receives external inhibitory inputs. All excitatory synaptic connections are mediated
by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) conductances, and all inhibitory synaptic
connections are mediated by γ-aminobutyric acid type-A receptors (GABAAR) conductances, following:

Ix,i
syn = gx,i

syn sx,i
syn (vx,i −Vsyn)

d
dt

sx,i
syn =−sx,i

syn/τsyn,
(1)

where x refers to the target neuron group (TC or RE), i refers to the neuron index within the group, and syn refers to the
synapse type (AMPA or GABAA). VAMPA = 0 mV, VGABA =−80 mV, τAMPA = 2.5 ms, and τGABA = 10 ms are the reversal
potentials and synaptic timescales of AMPAR and GABAR.

To produce distributions of firing rate and burst rate comparable to experimental observations, the synaptic conductances
of external inputs gx,i

syn,ext are set to be heterogeneous, with conductance strengths following a log-normal distribution with
mean ḡx

syn,ext and standard deviation
!

ḡx
syn,extσ x

syn,ext. The extent of heterogeneity of the external inputs and the neuronal
firing rates in the circuit is thereby shaped by σ x

syn,ext. The parameters for external inputs are ḡTC
AMPA,ext = 0.018 mS/cm2,

ḡRE
AMPA,ext = 0.0128 mS/cm2, ḡRE

GABA = 0.0064 mS/cm2, σTC
AMPA,ext = 0.4, σRE

AMPA,ext = 0.3, and σRE
GABA,ext = 0.15. In Figure

S1, ḡx
syn,ext is instead varied so that mean firing rate is fixed around 11 Hz for TC neurons and 16 Hz for RE neurons.

The synaptic conductances for connections between TC and RE neurons are constant, with ḡTC→RE
AMPA = 0.005 mS/cm2 and

ḡRE→TC
GABA = 0.05 mS/cm2.

TC Neuron Model

The TC neuron is modeled by a single-compartment Hodgkin-Huxley model, with a minimal set of active conductances
sufficient o endow the neuron with characteristic the tonic and burst spiking dynamics. The model is similar to prior models
of TC neurons (Destexhe et al., 1993b;a), and specific TC channel conductance equations used here were adapted from
prior TC neuron modeling (Destexhe et al., 1993a; Golomb et al., 1996). In all equations below describing neuronal
currents, membrane potential has the unit of millivolt (mV), and temperature factors Tadj were set with temperature T =

36◦C.

The membrane potential of the TC neuron is governed by the following dynamics:

Cm
dvTC

dt
=−ITC

L − ITC
Na − ITC

K − ITC
CaT − ITC

h − ITC←RE
GABA − ITC←ext

AMPA + ITC
inj , (2)

where ITC
inj is any injected current input, and ITC

L = gTC
L (vTC −V TC

L ) is the leak current with gTC
L = 0.05 mS/cm2 and V TC

L =
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−90 mV. The Na+ current is given by :
ITC
Na = gTC

Na
"
mTC

Na
#3

hTC
Na

"
vTC −VNa

#

dmTC
Na

dt
=
$
aTC

m,Na
"
1−mTC

Na
#
−bTC

m,NamTC
Na
%
·T Na,K

adj

dhTC
Na

dt
=
$
aTC

h,Na
"
1−hTC

Na
#
−bTC

h,NahTC
Na
%
·T Na,K

adj

aTC
m,Na =−0.32

vTC −VT −13
exp [−(vTC −VT −13)/4]−1

bTC
m,Na = 0.28

vTC −VT −40
exp [−(vTC −VT −40)/5]−1

aTC
h,Na = 0.128e−(vTC−VT−17)/18

bTC
h,Na =

4
exp [−(vTC −VT −40)/5]+1

.

(3)

where gTC
Na = 30 mS/cm2, VNa = 50 mV, and the spike adjusting threshold VT =−55 mV. The temperature factor is given

by T Na,K
adj = 3(T−36)/10.

The K+ current dynamics are given by:
ITC
K = gTC

K (nTC
K )4(vTC −VK)

dnTC
K

dt
=
$
aTC

n,K
"
1−nTC

K
#
−bTC

n,KnTC
K
%
·T Na,K

adj

aTC
n,K =−0.32

vTC −VT −15
exp [−(vTC −VT −15)/5]−1

bTC
n,K = 0.5e−(vTC−VT−10)/40,

(4)

where gTC
K = 2 mS/cm2, and VK =−95 mV.

The low-threshold Ca2+ current dynamics are given by:
ITC
Ca = gTC

Ca
"
mTC

Ca
#3

hTC
Ca

"
vTC −VCa

#

dmTC
Ca

dt
=
"
mTC

∞,Ca −mTC
Ca
#
/τTC

m,Ca

dhTC
1,Ca

dt
= aTC

h1,Ca
"
1−hTC

1,Ca −hTC
2,Ca

#
−bTC

h1,CahTC
1,Ca

dhTC
2,Ca

dt
= bTC

h2,Ca
"
1−hTC

1,Ca −hTC
2,Ca

#
−aTC

h2,CahTC
2,Ca

mTC
∞,Ca =

1
1+ exp [−(vTC +65)/7.8]

τTC
m,Ca =

1

T Ca,TC
adj,m

mTC
∞,Ca · (1+ exp

$
−
"
vTC +30.8

#
/13.5

%
)

KTC
h,Ca =

&
0.25+ exp(vTC +85.5)/6.3−0.5

aTC
h1,Ca = exp

$
−
"
vTC +162.3

#
/17.8

%
·TCa,TC

adj,h

bTC
h1,Ca = aTC

h1,CaK
TC
h,Ca

aTC
h2,Ca =

1+ exp
$
vTC +39.4

%
/30

240 ·
'

1+KTC
h,Ca

( ·T Ca,TC
adj,h

bTC
h2,Ca = aTC

h2,CaK
TC
h,Ca

d[Ca]TC

dt
=−

$
−aCaITC

Ca
%
+
−KT,Ca

[Ca]TC

[Ca]TC +KD,Ca
,

(5)
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where gTC
Ca = 1.4 mS/cm2, and VCa = 120 mV. The temperature factors T Ca,TC

adj,m = 5(T−24)/10 and T Ca,TC
adj,h = 3(T−24)/10. The

gating kinetics was adjusted to 36 ◦C. Parameters for the Ca2+ kinetics, aCa = 1/(2× 96489 Cmol−1 × 1µm), KT,Ca =

0.1µM/ms, and KD,Ca = 0.1µM.

ITC
h is modeled as a single-variable kinetic scheme with the dependence of its activation on voltage and intracellular Ca2+.

The kinetic equations are as following:
ITC
h = gTC

h mTC
h (vTC −Vh)

mTC
h = OTC

1,h +gTC
inc,hOTC

2,h

d
dt

OTC
1,h = aTC

h (1−OTC
1,h −OTC

2,h)−bTC
h OTC

1,h + kTC
4,hOTC

2,h − kTC
3,hPTC

h OTC
1,h

d
dt

OTC
2,h =−kTC

4,hOTC
2,h + kTC

3,hPTC
h OTC

1,h

d
dt

PTC
h =−kTC

2,hPTC
h + kTC

1,h(CaTC)4(1−PTC
h )

aTC
h = HTC

∞,h/τTC
h

bTC
h = (1−HTC

∞,h)/τTC
h

HTC
∞,h =

1
1+ exp [(vTC +75)/5.5]

τTC
h =

1

T h,TC
adj,m

· (20+
1000

exp [(vTC +71.5)/14.2]+ exp [(vTC +89)/11.6]
),

(6)

where gTC
h = 0.05 mS/cm2, Vh = −43 mV, and gTC

inc,h = 2. According to the channel properties, the reaction rates are
kTC

1,h = 25 µM−2ms−1, kTC
2,h = 4×10−4 ms−1, kTC

3,h = 0.1 ms−1, and kTC
3,h = 10−3 ms−1.

RE Neuron Model

The RE neuron is also modeled by a single-compartment Hodgkin-Huxley model, with the specific channel conductance
equations adapted from prior RE neuron modeling (Destexhe et al., 1994).

The membrane potential of the RE neuron is governed by the following dynamics:

Cm
dvRE

dt
=− IRE

L − IRE
Na − IRE

K − IRE
CaT − IRE

KCa − IRE
CaN

− IRE←TC
AMPA − IRE←ext

AMPA − IRE←ext
GABA + IRE

inj ,

(7)

where IRE
inj is any injected current input, and the leak current is IRE

L = gRE
L (vRE −V RE

L ) with gRE
L = 0.05 mS/cm2 and V RE

L =

−80 mV. Here IRE
Na and IRE

K have the form as Eq. (3) and Eq. (4) respectively, with gRE
Na = 100 mS/cm2 and gRE

K = 10 mS/cm2.

The low-threshold Ca2+ current IRE
Ca has the following form:
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IRE
Ca = gRE

Ca (m
RE
Ca )

2hRE
Ca (v

RE −VCa)

dmRE
Ca

dt
= T Ca,RE

adj,m · (mRE
∞,Ca −mRE

Ca )/τRE
m,Ca

dhRE
Ca

dt
= T Ca,RE

adj,h · (hRE
∞,Ca −hRE

Ca )/τRE
h,Ca

mRE
∞,Ca =

1
1+ exp [−(vTC +52)/7.4]

τRE
m,Ca = 3+

1
exp [(vRE +27)/10]+ exp [−(vRE+102/15)]

hRE
∞,Ca =

1
1+ exp [−(vTC +80)/5.0]

τRE
h,Ca = 85+

1
exp [(vRE +48)/4]+ exp [−(vRE+407/50)]

dCaRE

dt
=−(−aRE

Ca IRE
Ca )+− (CaRE −CaRE

∞ )/τRE
Ca ,

(8)

where gRE
Ca = 2.1 mS/cm2. The temperature adjusting terms T Ca,RE

adj,m = 5(T−24)/10 and T Ca,RE
adj,m = 3(T−24)/10. The gating kinetics

was adjusted to 36 ◦C. Parameters for the Calcium kinetics, aRE
Ca = 1/(2× 96489 Cmol−1 × 1µm), CaRE

∞ = 0.24 µM, and
τRE

Ca = 5 ms.

The Ca2+-dependent K+ current is described as:
IRE
KCa = gRE

KCa(m
RE
KCa)

2(vRE −VK)

dmRE
KCa

dt
= (mRE

∞,KCa −mRE
KCa)/τRE

KCa

mRE
∞,KCa = aRE

m,KCa(CaRE)2/[aRE
m,KCa(CaRE)2 +bRE

m,KCa]

τRE
KCa =

1

T KCa,RE
adj,m

1
aRE

m,KCa(CaRE)2 +bRE
m,KCa

,

(9)

where gRE
KCa = 10 mS/cm2, aRE

m,KCa = 48 ms−1mM2, and bRE
m,KCa = 0.03 ms−1. The temperature adjusting term is T KCa,RE

adj,m =

3(T−22)/10.

The Ca2+-dependent nonspecific cation current follows the equation:
IRE
CaN = gRE

CaN(m
RE
CaN)

2(vRE −VCaN)

dmRE
CaN

dt
= (mRE

∞,CaN −mRE
CaN)/τRE

CaN

mRE
∞,CaN = aRE

m,CaN(CaRE)2/[aRE
m,CaN(CaRE)2 +bRE

m,CaN]

τRE
CaN =

1

T CaN,RE
adj,m

1
aRE

m,CaN(CaRE)2 +bRE
m,CaN

,

(10)

where gRE
CaN = 0.25 mS/cm2, VCaN = −20 mV, aRE

m,CaN = 20 ms−1mM−3)2, and bRE
m,CaN = 0.002 ms−1, and the temperature

adjusting term T CaN,RE
adj,m = 3(T−22)/10.

Top-Down and Stimulus Inputs

Top-down inputs are stimulated as Poisson-distributed spike trains, of a given rate, driving either GABAA or AMPA
synapses on either RE or TC neurons. The external spike trains are generated by a Poisson process with rate Γx

synνx
syn for

syn=AMPA, GABA and x= TC, RE. Here, Γx
syn is the factor denoting the strength of the top-down attentional modulation,
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with Γx
syn = 1 during the baseline state. We set νTC

AMPA = 400 (sp/s), νRE
AMPA = 400 (sp/s) and νRE

GABA = 400 (sp/s) to obtain
the the mean firing rate is around 11 (sp/s) for TC neurons and 15 (sp/s) for RE neurons (Figure S1B-C).

For parsimony, stimulus inputs are generally simulated as direct current inputs to TC neurons. The probability of a TC
neuron receiving a stimulus input is random with probability p = 0.5 to reflect stimulus specificity on sensory inputs to
TC neurons. In most figures, stimulus inputs are unstructured with equal strength to all recipient TC neurons. However,
in Figure S3 and corresponding parts of Figure S5 (Sdis,Scong,Sinco), stimuli inputs are structured across neuron index to
reflect tuned sensory inputs in discrimination tasks, with a Gaussian wave of width σ = 30 neurons around the mean (and
extending past neuron 1 to neuron 1000 and vice versa). The two inputs for discrimination have a difference in mean
location by 30 neurons.

Measures of Circuit Dynamics

In Figures S1, and S5, we characterized aspects of circuit spiking dynamics and their dependence on model parameters.
A burst (Figure S1) of a neuron is defined as multiple (at least two) spikes with an interspike-interval (ISI) of less than 20
ms, preceded by a long period of 100 ms with no spiking. This definition of bursting is similar to prior definitions used in
electrophysiological studies of thalamus (Halassa et al., 2011; Wells et al., 2016). Spindle probability is defined as the
probability the spindle power reaches a threshold (Figure S5). The spindle power is defined as the power within 9 to 15
Hz band-pass filtered from the power spectrum of population spiking activity.

The awake state regime can be defined by two curves in the parameter space of Figure S1. The orange line defines the
upper bound before which the spontaneous activity becomes synchronous (Figure S1G), and the purple line defines the
lower bound for RE activation to generate an evoked spindle-like response (Figure S1H). The two lines are defined as
the equipotential lines where the maximum power spectral density in either case reach a certain threshold. The threshold
is chosen by considering the first column in (Figure S1H), where TC neurons do not project to RE neurons. Since any
oscillations in the current regime of the circuit model come from reverberation between TC and RE neurons, the circuits
in the first column in (Figure S1H) are in the asynchronous regime. The threshold is defined as the mean plus twice the
standard deviation of maximum power spectral density across that column.

Reduced Two-Variable Mean-Field Model

For the dynamical systems analysis of Figure 3, we reduced the thalamic circuit to a two-variable mean-field description,
with one dynamical variable representing the activity of each of the excitatory and inhibitory populations (Wong and Wang,
2006). The synaptic gating variables of the TC and RE populations (sα , α = TC, RE) follow:

d
dt

sα =− sα

τα +Fα(Iα) (11)

where τTC = 2.5 ms is the time constant of fast AMPA synapses, and τRE = 10 ms is the time constant of GABAA

synapses. Fα(·) describes the frequency-current (F-I) curve relation used in prior studies (Abbott and Chance, 2005;
Wong and Wang, 2006; Murray et al., 2017):

rα = Fα(Iα) =
aα Iα −bα

1− exp [−cα(aα Iα −bα)]
. (12)

We obtained parameters for the F-I curves by fitting Equation 12 to simulated F-I curves of our Hogkin-Huxley neuron
models as shown in Figure 3B. Neuronal parameters used with aTC = 40.81 (sp/s) · (µA/cm2)−1, bTC = 34.54 (sp/s), and
cTC = 0.107 s for TC population, as well as aRE = 25.97 (sp/s) · (µA/cm2)−1, bRE =−3.91 (sp/s), and cRE = 0.222 s for RE
population.

23



The input currents to the TC and RE populations are given by:)
ITC =−JGABAsRE + ITC

Bg + ITC
Stim,

IRE = JAMPAsTC + IRE
Bg ,

(13)

where Iα
Bg is the background input, and ITC

Stim is the stimulus input, JAMPA is the coupling strength from TC to RE, and JGABA

is the coupling strength from RE to TC. Here, we chose the coupling strengths in the mean-field model to be consistent with
the spiking circuit model. In the spiking circuit, each TC (RE) neuron receives 10 RE (TC) connections on average with
synaptic conductance ḡT RN−>TC

GABA = 0.05 mS/cm2 (ḡTC−>T RN
AMPA = 0.005 mS/cm2). Taking into account the reversal potentials

of the AMPA and GABA synapses to estimate approximate ranges of currents, we set JAMPA = 4.0 (µA/cm2) and JGABA =

4.5 (µA/cm2). Finally, the background inputs Iα
Bg were set so that the TC firing rate is 10 (sp/s) and RE firing rate is 15

(sp/s), in line with the spiking circuit model, with values ITC
Bg = 1.552 (µA/cm2) and IRE

Bg = 0.305 (µA/cm2).

From eq. (13), we can derive *
+++,

+++-

sTC =
IRE − IRE

Bg

JAMPA
,

sRE =−
ITC − ITC

Bg − ITC
Stim

JGABA
.

Therefore, eq. (11) can be expressed as*
++,

++-

d
dt

ITC =− ITC

τRE +
ITC
Bg + ITC

Stim

τRE − JGABAFRE(IRE),

d
dt

IRE =− IRE

τTC +
IRE
Bg

τTC + JAMPAFTC(ITC),

(14)

with steady-state solution )
sTC

0 = τTCFTC(ITC
0 ) = τTCFTC(sTC

0 ,sRE
0 )

sRE
0 = τREFRE(IRE

0 ) = τREFRE(sTC
0 ,sRE

0 ).

To calculate the response gain of the circuit, we consider the impact of small increment in stimulus input δ I to ITC
Stim. The

response gain of the circuit can be defined as the local slope kTC for the change in TC firing rate (δ rTC) resulting from the
stimulus increment: δ rTC ≈ kTCδ I.

As a consequence of the stimulus increment δ I, sTC
0 and sRE

0 change with increments δ sTC and δ sRE, respectively. Then
we can derive the increments of the total current inputs as δ ITC = −JGABAδ sRE + δ I and δ IRE = JAMPAδ sTC, and the
first-order linearized approximation of the F-I curve as*

+++,

+++-

FTC(ITC
0 +δ ITC)≈ FTC(ITC

0 )+
dFTC(I)

dI

...
I=ITC

0

(−JGABAδ sRE +δ I),

FRE(IRE
0 +δ IRE)≈ FRE(IRE

0 )+
dFRE(I)

dI

...
I=IRE

0

(JAMPAδ sTC).

The resulting dynamics of the linearized systems follow

d
dt

/
δ sTC

δ sRE

0
≈

1

23
− 1

τTC −JGABA
dFTC(I)

dI

...
I=ITC

0

JAMPA
dFRE(I)

dI

...
I=IRE

0

− 1
τRE

4

56

/
δ sTC

δ sRE

0
+

1

3δ I dFTC(I)
dI

...
I=ITC

0

0

4

6 ,

from which we can derive the steady-state increments δ sTC
0 and δ sRE

0 as*
++++++,

++++++-

δ sTC
0 =

τTC
" dFTC(I)

dI

...
I=ITC

0

#

1+ τTCτREJAMPAJGABA
" dFTC(I)

dI

...
I=ITC

0

#" dFRE(I)
dI

...
I=IRE

0

#δ I

δ sRE
0 = τREJAMPA

"dFRE(I)
dI

...
I=IRE

0

#
δ sTC

0 ,
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and the increment of TC firing rate as

δ rTC
0 = FTC(ITC

0 +δ ITC)−FTC(ITC
0 )≈ dFTC(I)

dI

...
I=ITC

0

(−JGABAδ sRE +δ I)

= kTC(ITC
0 , IRE

0 ) δ I
(15)

where the circuit response gain kTC(ITC
0 , IRE

0 ) is given by

kTC(ITC
0 , IRE

0 ) =
1

1
dFTC(I)

dI

...
I=ITC

0

+ τTCτREJAMPAJGABA

7
dFRE(I)

dI

...
I=IRE

0

8 .

(16)

Equation 16 shows that The response gain of the circuit, kTC(ITC
0 , IRE

0 ), depends on the first derivatives of the F-I curve of

both TC and RE neurons. Note that the response gain increases when dFTC(I)
dI

..
I=ITC

0
increases or dFRE(I)

dI

..
I=IRE

0
decreases.

In addition, the nonlinearity of the F-I curve (usually concave upward) makes dFTC(I)
dI

..
I=ITC

0
and dFRE(I)

dI

..
I=IRE

0
increase

when the total current input I increases. Then, in the case of RE modulation, top-down modulation decreases the total
input of the RE neurons for the attended modality and suppresses their firing rate, thus increasing the TC firing rate via
disinhibition. In this case, dFTC(I)

dI

..
I=ITC

0
increases and dFRE(I)

dI

..
I=IRE

0
decreases, which both increase the slope of the

gain curve. In contrast, in the case of TC modulation, top-down modulation increases the total input of TC neurons and
amplifies its firing rate, which in turn increases the firing rate of the RE neurons (according to Eq. (13)). As such, both
dFTC(I)

dI

..
I=ITC

0
and dFRE(I)

dI

..
I=IRE

0
increase, which have opposing and partially canceling-out effects on the response gain.

For interpretability and simplicity, Figure 3 are shown in terms of the firing rates of TC and RE populations, though an
equivalent description can be expressed using the synaptic gating variables in the system.

In Figure 7, we considered a thalamo-reticular network which consists of 1000 TC and 1000 RE rate neurons described by
Equation (11), to characterize the effects of recurrent excitation on population coding of bottom-up and top-down signals.
We used the same connectivity matrices as those in spiking networks. We then approximated the target heterogeneous
baseline firing rates of TC (RE) neurons by a lognormal distribution with mean 10 sp/s (15 sp/s) and standard deviation
6 sp/s (i.e., similar to that in the spiking network from Figure S1B). Then, the recurrent input (inhibition from RE to TC
and excitation from TC to RE) was calculated with the previously derived coupling strength, and the background input into
each TC or RE neuron was therefore determined with use of the f-I equation. In addition, when investigating the effect of
recurrent excitation, we choose τTC = 10 ms in order to make the system have a stable fixed point and avoid the oscillatory
dynamics. Also, we ensure the similar firing activities at the equilibrium state by fixing the product values of τTCJEE and
τTCJAMPA.

To be more specific, the total input into the ith TC or RE neuron is*
++,

++-

ITC, i = JEE ∑
j

CEE
i j sTC, j − JGABA ∑

j
CEI

i j sRE, j + ITC, i
Bg + ITC, i

Stim ,

IRE, i = JAMPA ∑
j

CIE
i j sTC + IRE, i

Bg ,

where, Cαγ for α,γ = E, I are connectivity matrices, which are randomly generated with given probabilities. First we
assume!rTC

0 at the equilibrium. There are two kinds of input, bottom-up stimulus (δ Ibu ·!Ibu) into E population, and top-down
inhibition (-δ Itd ·!Itd) into I population, where δ Ibu and δ Itd are the magnitude of the inputs. !Ibu and!Itd are the normalized
vectors with elements decided according to the stimulus and top-down inputs used in the spiking network model in Figure
7. However,!Ibu and!Itd can almost be any normalized vectors with non-negative elements. Supposing with the two inputs,
one can obtain the corresponding TC firing rate patterns!rTC

bu and!rTC
td . Then their effects can be approximated by

!β BU ∝ (!rTC
bu −!rTC

0 )/δ I

!β TD ∝ (!rTC
td −!rTC

0 )/δ I
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Then with small δ I, we can have
!β BU ∝ A!bBU

!β TD ∝ A!bTD

where A is a matrix dependent with JEE, i.e., A = F′
TC + F′

TC
"
τTCJEECEE − τTCτREJAMPAJGABACEIF′

RECIE
#
F′

TC. The

diagonal matrix F′
TC has

"
F′

TC
#

ii =
dFTC(I)

dI

..
I=ITC, i . Same as the The diagonal matrix F′

RE. The vector!bBU =!Ibu/τTC, and
!bTD = τRE

τTC JGABACEIF′
RE
!Itd. Then, with a small perturbation δEE on JEE, and assuming small change in the derivative of f-I

curve due to this perturbation, one can find
∆A ≈ F′

TC
"
τTCδEECEE#F′

TC (17)

Since CEE is a random matrix, ∆!β BU = ∆A!bBU and ∆!β TD = ∆A!bTD represent two non-negative vectors that are nearly
parallel to each other. That is, increase JEE can reduce the angle between the two vectors, while amplifying their similarity.
Intuitively, increasing recurrent excitation can increase a same amount of input into all the neurons, which reduces the
heterogeneity between each neuron.

Support Vector Machine (SVM) Decoder

To study how stimulus information can be read out from the spiking circuit model, and how its performance can be
regulated by top-down inputs, we trained linear support vector machine (SVM) classifiers to perform detection and
discrimination. All analysis is conducted using the python package scikit-learn (function linearSVM).

For each task, the firing rate of each TC neuron was calculated in a time bin after the stimuli onset on each trial. Here we
used as a time bin the first 100 ms following stimulus input onset; we found that major findings were qualitatively similar
if later time bins are used (not shown). The SVM classifier was trained on half of the trials (randomly selected) and the
other half of the trials were used for testing and prediction. The linear SVM classifier works by first constructing an optimal
hyperplane for classification, based on labeled training data, and then generating predictions of the labels on testing data.
Accuracy of the decoding is assessed by comparing the predicted labels to the actual labels. The accuracy is calculated
as the proportion of trials classified correctly.

Specifically, the SVM receives TC activity as input: rTC(itrial, istim, ineu, imod) is the firing rate of the TC neuron ineu with
the istimth level stimulus and imodth level top-down inhibiton to RE neurons in the itrial trials. Here itrial = 1, ...,400, ineu =

1, ...,1000, istim = 0,1, ...,10, and imod = 1, ...,8. Thus the total dimension of rTC is 400×11×1000×8.

For detection, the training set consists of 200 of the trials (across all TC neurons) with no stimulus (istim = 0 for each level
of top-down modulation (with a dimension of 200×1×1000×8). The training set also consists of 20 trials for each level of
stimulus istim = 1, ...,10 and each level of top-down modulation via (with a dimension of 20×10×1000×8). The training
set thus includes half of the trials with no stimulus, and half with stimulus of various magnitudes. The testing set similarly
consists of 200 trials with no stimulus (with a dimension of 200×1×1000×8, using trials that were not used for training),
and 20 trials for each level of stimulus and top-down modulation (with a dimension of 20×10×1000×8, using trials that
were not used for training). The labels for SVM for detection are presence (1) and absence (0) of stimulus.

For discrimination between two distinct structured inputs (input 1 and input 2) (within one modality), the training set
includes 200 trials across all neurons for each level of stimulus strength (from 0 to 10) and top-down modulation via RE
(from 1 to 8), for each of input 1 and 2. The dimension of the training set is thus 200× 11× 1000× 8× 2, where the ×2
accounts for input 1 and input 2. The trials not used for training have the same dimensions with the training set and is
used for testing. The labels for SVM for discrimination are the identity of input 1 (1) and input 2 (0).

For congruent and incongruent discrimination across modalities, the training set includes 200 trials across levels of
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stimulus strength (from 0 to 10), using 2000 neurons (1000 TC neurons for each of the two modalities). Two conditions of
top-down modulations are considered (for the model to attend to either modality and ignore the other) : imod = 8 for the
first modality and imod = 1 for the second modality; and imod = 1 for the first modality and imod = 8 for the second modality.
The dimension of the training set is thus 200× 11× 2000× 2. The testing set includes the other 200 trials not used in
the training set, across the same conditions as for the training set. The labels for SVM for congruent and incongruent
discrimination are the identity of input 1 (1) and input 2 (0) of the attended modality.

Detection and discrimination sensitivity (Figures 2, S2, S3, and S5) are defined as the slope of the detection and
discrimination accuracy as a function of stimulus amplitude, within the linear portion with low stimulus amplitude.

SVM, Stimulus, and Top-down Weight Vectors

The SVM generates a readout weight vector (!β SVM), with which an SVM score (SSVM) can be calculated from the activity
of TC neurons (!rTC):

SSVM = !β SVM ·!rTC +β SVM
0 (18)

The activity of the ith TC neuron (rTC
i ) in the training data can be fitted to a linear regression model:

rTC
i = β BU

i (1+δgixmod)xstim +β TD
i xmod +β base

i (19)

where xstim is the dummy variable describing the strength of bottom-up stimulus input to TC neurons, xmod is the
dummy variable describing the strength of top-down input (inhibition to RE neurons in Figure 4.), and δgi is the gain
modulatory factor. !β BU = (β BU

1 ,β BU
2 , · · ·)T , !β TD = (β TD

1 ,β TD
2 , · · ·)T , and !β BU×TD = (β BU

1 δg1,β BU
2 δg2, · · ·)T thus represent

the regression coefficient weights across all neurons for bottom-up stimulus, top-down modulation, and their interaction.

The cosine similarities between the three regression weight vectors and !β SVM can be computed. In particular, we found
that the SVM weight vector is positively correlated with !β BU and !β BU×TD, but is weakly negatively correlated with !β T D

(Figure 4D-E). This can be understood by considering the SVM score, rewriting Equation 18 as
SSVM = !β SVM ·

'
!β base +!β BUxstim +!β TDxmod +!β BU×TDxstimxmod

(
+β SVM

0

= !β SVM ·
'
!β BU +!β BU×TDxmod

(
xstim +!β SVM ·!β TDxmod +C (20)

where C = β SVM
0 +!β SVM ·!β base is a constant. Note that, the magnitude of each coefficient vector can be affected by the

dummy variable. Thus, we consider their spatial orientation by calculating the cosine similarity, that is, studying the angle
between each two vectors. The positive cos(!β SVM, !β BU) verifies that the SVM score is indeed sensitive to the presence of
stimulus. Top-down modulation effectively increasing acting as a gain increase of the SVM sensitivity to bottom-up input
(from !β BU to !β BU +!β BU×TDxmod). The negative cos(!β SVM,!β T D) reduces the false alarm rate in the absence of stimulus
(xstim = 0), such that top-down modulation improves performance on stimulus-absent trials, by suppressing the SVM score
and increasing the separation of SVM scores between trials with and without stimulus (Figure 4).

Sensitivity Analysis

Perturbations to cellular and synaptic parameters were performed and their effect on multiple circuit and behavioral
features were evaluated (Figure S5). The 6 perturbed parameters were (i) background excitatory input to TC neurons
(BgTC

E ), (ii) T-type calcium conductance in TC neurons (gTC
CaT), (iii) background excitatory input to RE neurons (BgRE

E ), (iv)
T-type calcium conductance in RE neurons (gRE

CaT), and (v, vi) the synaptic connections between the two neurons (gAMPA
TC→RE

and gGABA
RE→TC). The 7 evaluated circuit and behavioral features were (i) TC firing rate (r0), (ii) response gain (k), (iii) spindle
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probability (P), (iv) detection sensitivity (Sdet), (v) discrimination sensitivity (Sdisc), (vi) congruent discrimination sensitivity
(Scong), and (vii) incongruent discrimination sensitivity (Sinco) . In particular, the 6 perturbed parameters are varied by
±10%, and the feature sensitivity is defined as the change in the feature over the change in parameters. For instance, a
feature sensitivity of 1 means that a 1% parameter perturbation alters the feature by 1%.

Specifically, we analyzed the feature sensitivity in the space of evaluated features, i.e., each perturbation is characterized
by a column vector consisting of 7 different feature sensitivities. Therefore, we can obtain the feature sensitivity matrix X
of dimension 7×6 within which each column represents one kind of perturbation (Figure S5B).

Singular value decomposition (SVD) is then performed on the sensitivity matrix X to find its principal components. The
SVD of X is the factorization of X into the product of three matrices:

X =UΣV T,

where U and V are 7× 7 and 6× 6 unitary matrices, respectively. Σ is a rectangular diagonal matrix with positive real
entries (corresponding singular values, usually assuming σ1 ≥ σ2 ≥ · · · ). Then, with the knowledge of linear algebra, one
has

XTX =
6

∑
i=1

σ2
i vivi

T,

where vi is the ith column vector of V . Therefore, we define
σ2

i

∑i σ2
i

, which represents the relative amount of reconstruction

error reduced by including component i, as the fraction of the power in the feature sensitivity matrix associated with
component i. It can be seen clearly that SVD is essentially principal component analysis (PCA) without mean subtraction.
The first principal component from PCA captures the dominant pattern of variation. By contrast, the first component of
SVD captures the dominant pattern of perturbation effects across features: u1σ1v1

T is the closest rank-1 approximation
of X . In the SVD analysis, we found that SV1 explains 85% of the power in feature sensitivity, which indicates that the
circuit’s sensitivity to perturbations is indeed approximately one-dimensional (Figure S5C). We found that the weights
of SV1 are all the same sign, indicating that all features increase or decrease together along this axis (Figure S5B
right). Finally, we examined the SV1 scores of the perturbation points, i.e. their projection along the SV1 axis. TC- and
RE-related perturbations have opposite-sign scores, with synaptic perturbations at intermediate scores. We can therefore
characterize the dominant mode of sensitivity as capturing alteration in excitation-inhibition balance (Figure S5D).

Experimental Datasets of Neuronal Recordings

Full experimental details for the datasets have been previously described in Wimmer et al. (2015) and Nakajima et al.
(2019). In brief, for this cross-modal sensory selection task, freely behaving mice were guided by a rule signal to select
between spatially conflicting visual and auditory cues to receive a reward. At the beginning of each trial, mice were
presented with 100 ms of either brown (10-kHz low-pass-filtered white noise) or blue noise (11-kHz high-pass-filtered
white noise), each of which indicated one of two rules for sensory selection: attend to vision or attend to audition. This
rule cue was followed by a delay period (0.4-0.6 s) prior to target stimulus presentation. In “attend to vision” trials (brown
noise), the location of the rewarded port was signaled by a white LED (visual target) mounted underneath it in order to
establish an association between the location of the visual target and the location of the reward port. In “attend to audition”
trials (blue noise), mice learned the association between the auditory target, up-sweep (10-15kHz) or a down-sweep
(16-12kHz) with right or left ports, respectively. The auditory and visual target stimuli were co-presented indicating reward
at opposing locations and mice used rule cues (brown or blue noise) to match the target modality (vision vs. audition).

The dataset was recorded from two mice in the above cross-modal sensory selection task, including auditory thalamus
(ventral medial geniculate body, MGBv), auditory thalamic reticular nucleus (audRE), and primary auditory cortical (A1)
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excitatory and inhibitory neurons. As described in Nakajima et al. (2019), in order to make sure mice did not exhibit strong
behavioral biases toward one modality and that they were able to use trial cues to choose modalities, only sessions with
balanced performance (both auditory and visual trial types above 65%) across target modalities were used for the further
analysis. Neurons were selected for analysis by filtering based only on data quality. We first excluded neurons which
did not have any spikes during the stimulus presentation epoch over all the correct trials. The stimulus present epoch is
defined from 20 ms after stimulus onset to the time of stimulus offset. We also excluded neurons which were not recorded
stably throughout a condition during the stimulus presentation epoch. These were identified by calculating the coefficient
of variation (CV) of each unit’s spike counts over trials of one stimulus at one modality condition. Units with CVs greater
than 2 were deemed to be unstable and were excluded.

Analysis of Neuronal Recordings

In the following analysis, we further selected MGBv neurons that have a significant preference to the up- or down-sweep
stimulus. That is, these neurons exhibit stimulus tuning in their spiking activity which can support decoding of stimulus
identity. The significant preference was determined by a two-tailed Mann-Whitney U test with α = 0.05. We then labeled
a unit as preferring up-sweep (down-sweep) when it has a higher average firing rate to up-sweep (down-sweep) stimulus.
52 neurons satisfied this tuning criterion. We grouped the MGBv neurons with the four conditions (“preferred, attend
to audition”, “nonpreferred, attend to audition”, “preferred, attend to vision”, and “nonpreferred, attend to vision”), and
performed the analysis in Figure 5. In Figure 5C, we normalized the firing rate of each unit by the averaging firing rate
of all correct trials in the pre-stimulus epoch (which is defined as total 100 ms just before the stimulus onset), and then
smoothed the PSTH of each conditions with a causal exponential function with a 15-ms time constant. The normalized
firing activities were aligned to the time of stimulus-onset.

For SVM-based decoding analysis on the MGBv neurons’ responses during the stimulus presentation epoch, similar to
the decoding analysis in Nakajima et al. (2019), neurons were first pooled into a pseudo-population (Figures 5E, S6A-C).
The SVM classifier was used for determine whether a firing activity pattern was evoked from the preferred stimulus or not.
Note that, only correct trials were used and sessions were only included if greater than 20 correct trials per condition were
available. In order to obtain the SVM accuracy, evoked spike counts under each condition were first randomly divided
into training and test subsets (10 trials sampled 8 used for training and 2 for testing). Then according to the trials in
the training subset, we labeled the responses of each unit as “preferred, attend to audition”, “nonpreferred, attend to
audition”, “preferred, attend to vision”, and “nonpreferred, attend to vision”. In order to get a training firing activity pattern
of a given condition, we randomly chose one evoked firing activity of each neuron from its pre-selected training subset
under that condition and formed a firing activity vector. With a bootstrapping procedure, we generated 800 training firing
activity vectors for each condition. In the same way, we generated 200 testing firing activity vectors for each condition.
In the following, we ignored the attention rules (i.e., “preferred, attend to audition” + “preferred, attend to vision” →
“preferred”, and same for “nonpreferred”), and trained the SVM classifier to distinguish the firing patterns only determined
by “preferred” and “nonpreferred” conditions. The accuracy either in attention to audition trials or vision trials then could
be obtained accordingly. To determine the variability of this estimate, the same procedure was repeated 100 times.

We used all the correct trials to determine the SVM axis of MGBv recordings (!β Dec in Figure 5G, I). In the same way
described by the above paragraph, we generated 1000 training firing activity vectors for each condition, and trained the
SVM classifier of firing patterns ignoring the attention rules. In addition, we obtained the weights of !β BU, !β TD and !β BU×TD

by fitting the linear regression model in Equation (19) with different dummy variables xstim = 1 (0) for stim = “prefer”
(“nonprefer”), and xmod = 1 (-1) for mod = “attend to audition” (“attend to vision”). The results were robust to dummy
variable design. In order to compare the MGBv recording analysis to our model results, we obtained the firing rate trials
from the spiking circuit model within the detection paradigm (Figure 2C), only with stimuli of 0 and 0.4 µA/cm2 and with
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two levels of top-down modulation (ΓRE
GABA = 0.8 and 1.2), to be analogous to the experimental four conditions. Then we

calculated all the coding axes discussed in our work (Figure 5F–I).

With the same selection rules above, we obtained 25 neurons in A1. Then, based on Equation (19), we calculated the
gain modulation factor δg with a 20-ms sliding window (Figure 6C–D). After selection of neurons, very few MGBv and A1
neurons were simultaneously recorded. Here, we predicted the PSTH of the ith neuron in the target A1 population by the
PSTHs in the source MGBv population with a linear model:

!RA1
i = rMGB!β MGB→A1

i +Cmap
i

where !RA1
i = [RA1

i (t1), ...,RA1
i (tL)]T is a vector of firing activity at each given time point. The matrix rMGB is L× n with L

time points and n MGB neurons. Specifically, rMGB[k, j] represents the firing activity of the jth MGBv neuron at time point
tk. !β MGB→A1

i is the mapping vector from MGBv population to the ith A1 neuron. Cmap
i is a constant. To reduce overfitting,

we used ridge regression with a regulation factor 2. We also considered the reconstruction with a time lag δ t, that is,
rMGB[k, j] represents the firing activity of the jth MGBv neuron at time point tk +δ t (Figure S6D–E).

In addition, as shown in Figure S6F–G, we calculated the mapping vector !β MGB→A1
i from the Poisson generalized linear

model (GLM) (Keeley et al., 2020). In the Poisson GLM, the instantaneous firing rate of A1 approximated by the above
equation with a nonlinear kernel:

!RA1
i = exp

"
rMGB!β MGB→A1

i +Cmap
i

#
.

Then the spike count!yA1
i in the time bin of size ∆t (=20 ms, sliding window) follows a conditional Poisson distribution:

!yA1
i |rMGB ∼ Poisson(∆t ·!RA1

i ),

where the parameters were estimated by the maximum likelihood approach.

Software Availability

Spiking circuit simulations were performed using the Brian2 simulator (Stimberg et al., 2019). Upon publication, custom
modeling and analysis codes written in Python will be made publicly available on Github (https://github.com/murraylab),
and a Brian2 implementation of the spiking circuit model will be made publicly available via the ModelDB model database
(https://senselab.med.yale.edu/modeldb/).
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Supplementary Figures

AudTRN

Model Experiment

Figure S1: thalamic circuit model in alert awake regime. The circuit model is constrained to capture key circuit
dynamics observed in alert behaving animals. (Continued on the following page.)
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Figure S1: (Previous page.) (A) Rastergram showing quasi-asynchronous spiking activity in baseline state for RE (blue)
and TC (red) neurons. (B) Distribution of TC and RE firing rates, which arises from heterogeneous recurrent and
background connectivity. (C) Empirical distributions of firing rates in auditory thalamus (MGBv) and auditory thalamic
reticular nucleus (AudTRN), recorded in awake behaving mice (Nakajima et al., 2019). The average firing rates of
MGBv and auditory RE neurons are 11.2 sp/s and 13.8 sp/s, respectively (N=2 mice; n=119 MGBv; n=44 audTRN).
(D) Rastergram and evoked oscillation activity in response to pulse input to RE neurons. Black bar denotes time of pulse
onset. (E) Burst probability post-pulse relative to pre-pulse. Burst probability is increased after RE pulse input. (F) (F)
Power spectral density (PSD) over time of evoked response to RE pulse. The evoked response demonstrates decaying
oscillation in the spindle frequency. (G) Peak value of the PSD for spontaneous activity, as a function of gTC→RE

AMPA and
gRE→TC

GABA . Oscillation arises from strong coupling from TC to RE (gTC→RE
AMPA ). Orange line denotes the upper bound where the

circuit exhibits quasi-asynchronous spontaneous activity (see Methods). (H) PSD peak for the evoked response to RE
pulse input as a function of gTC→RE

AMPA and gRE→TC
GABA . Spindle oscillation is reduced with weak coupling from TC to RE (gTC→RE

AMPA )
or strong coupling from RE to TC (gRE→TC

GABA ). Purple line denotes the lower bound where the circuit exhibits an evoked
spindle-like response consistent to experimental observations. (I) Parameter ranges of gTC→RE

AMPA and gRE→TC
GABA considered

within the alert awake regime (shaded). Black dot denotes the control circuit. (J) Due to strong synaptic connectivity
between TC and RE populations, the circuit model exhibits strong spontaneous synchronous oscillations. Parameters
are marked in G. (K) The synaptic conductances of the circuit model are too weak to generate reverberating oscillations
when perturbed. Parameters are marked in H. (L) Evoked oscillation frequency of the circuit model with different synaptic
time constants. Here, to preserve total synaptic strength, conductances are scaled inversely with the scaling of time
constants. These results indicate that the intrinsic oscillation frequency in the circuit is shaped by both excitatory and
inhibitory synaptic time constants.
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input
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Figure S2: Top-down Excitation to TC or to RE. (A) Schematic of top-down excitation to RE neurons. (B) RE (blue)
and TC (red) baseline firing rate as a function of top-down modulation strength (excitation to RE). Of note, the direction of
modulation here is opposite of that for inhibition to RE Figure 2. (C) RE population activity in response to stimulus input
with different top-down modulation strengths. Black bar denotes the time of TC stimulus onset. (D) TC Population activity in
response to stimulus input with different top-down modulation strengths. Black bar denotes the time of TC stimulus onset.
(E) Gain curves of TC sensory outputs under different levels of top-down modulation strength. Darker color represents
stronger top-down strength. (F) Detection accuracy under different levels of top-down modulation strength. Darker color
represents stronger top-down strength. (G) The ratio firing-rate changes for RE and TC neurons, for top-down modulation
scenarios: inhibition to RE, excitation to TC, excitation to RE. The same change in TC firing rate can be obtained from
the three different top-down modulations, but RE responses differentiate TD→TC from TD→RE scenarios. (H) Response
gain of the circuit, as a function of top-down modulation strength, for the three scenarios. (I) Sensitivity of detection
accuracy as a function of top-down modulation strength. Panels (H,I) show that top-down modulation via RE neurons has
a stronger effect on response gain and detection performance, than via TC neurons. Black dots represent the control
parameter set.
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Figure S3: Attentional control of performance in discrimination paradigms. (A) Schematic of uni-modal
discrimination paradigm. Two tuned, partially overlapping stimulus patterns are used as inputs to the TC population.
On each trial, one stimulus is presented, with variable amplitude to control difficulty. A downstream decoder is trained
on TC output to classify which stimulus was presented. Top-down modulation is via non-specific inhibition to RE. (B)
Discrimination accuracy of a downstream decoder under different levels of top-down modulation strength. Darker colors
represent stronger top-down modulation. (C) Discrimination sensitivity of discrimination accuracy as top-down strength
is varied, for modulation via RE vs. via TC. (D) The TC firing rate with the tuned input as a function of the neuron index
after subtracting the baseline firing rate. This shows the tuning and overlap of stimulus input patterns. The solid lines are
fitted with top equations (Gaussian profile). (E) The TC firing rate as a function of the neuron index with the tuned input.
The firing rate does not clearly show any tuned profile. (F) The component profile of SVM weight vector as a function of
the neuron index. It shows that there are distinct peaks at the centers of the tuned Stimulus 1 (positive) and Stimulus 2
(negative). (Continued on the following page.)
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Figure S3: (Previous page.) (G) Schematic of the cross-modal (e.g., visual and auditory) discrimination paradigm. Here
there are two TC-RE circuits, each corresponding to a different modality. Biased top-down modulation via RE across
modalities allows attention toward the target modality (cyan) and filtering of the distractor modality (yellow), as well as
contextual switching of which modality is target vs. distractor. The target and distractor stimuli can be either congruent,
such that they map to the same readout response, or incongruent, such that they provide contrasting information. (Inset)
Top-down strengths target and distractor modalities as a function of the attentional bias. The attentional bias is defined as
the difference between the TC baseline activity in the attended modality to that in unattended modality (i.e., ∆TC baseline
activity). (H) Discrimination accuracy of a downstream decoder, for congruent (black) and incongruent (purple) trials with
strong (dark) and weak (light) attentional bias. (I) Discrimination sensitivity as a function of attentional bias, for congruent
and incongruent trials. Attentional bias can enhance discrimination accuracy for incongruent trials by filtering out distractor
stimuli. Across all conditions, the top-down modulatory input into the attended modality is held constant.
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Similarity

Figure S4: SVM decoder for detection and effects of top-down modulation via RE and TC neurons on decoding
for detection. (A) Schematic of signal detection with the SVM decoder. Detection accuracy depends on the difference
(D) between the mean of the SVM score distributions of stimulus present and absent, as well as, their standard deviations
(σ1, σ2). (B) The mean difference between SVM score distributions of stimulus on and off as a function of bottom-up
stimulus strength and top-down strength to RE. Both factors increase the score mean difference (D) with a strong impact.
(C) The sum of standard deviations (σon +σoff) as a function of bottom-up stimulus and top-down strength to RE. Both
factors have small effect on the deviation (note small range). These results indicate that stimulus and top-down inputs
improve detection performance through their effects on the score difference D. (D) Detection accuracy as a function of the
number of neurons used in the SVM decoder. Proportion of stimulus-on trials which are misses, as a function of top-down
modulation strength, with top-down modulation via either inhibition to RE neurons (green) or via excitation to TC neurons
(orange). Here, TC baseline activity denotes a common proxy for the strength top-down modulation, to compare RE-
and TC-mediated modulations. The rate of misses is reduced more effectively by RE modulation than by TC modulation.
(F) Proportion of stimulus-off trials which are false alarms, as a function of top-down modulation strength, with top-down
modulation via either inhibition to RE neurons (green) or via excitation to TC neurons (orange). The rate of false alarms
is reduced similarly by both modulations. (G) Projections of the bottom-up stimulus, top-down modulation, and interaction
weight vectors on the SVM vector weight. Top-down modulation via RE neurons (green) has a larger interaction term than
top-down modulation via TC neurons, which is consistent with the results shown in Figure 2I (i.e., RE modulation has a
larger effect). The top-down modulation of baseline activity helps to reduce the false alarm rate, and top-down effect on
output gain helps to reduce the miss rate. (Continued on the following page.)



Figure S4: (Previous page.) (H) Detection accuracy as a function of the stimulus amplitude. Here, the SVM decoder was
trained at a single level of top-down modulation strength (1.4). (I) Error proportion as a function of top-down strength. Both
miss and false alarm trials are reduced in the SVM decoder of (H). (J,K) Cosine similarity between different weight vectors
using an SVM trained at a single level of top-down modulation strength (J), and using an SVM trained at multiple levels of
top-down modulation strength (K). Both (J) and (K) consistently show that there are the positive similarities between the
bottom-up, top-down and interactions, whereas the decoder axis is negatively correlated with the top-down vector. This
negative projection helps the decoder to distinguish between top-down attentional inputs or bottom-up stimulus inputs,
even though both increase TC firing rates overall.
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Figure S5: Sensitivity analysis of circuit dynamics and computations. (A) Schematic of biophysical parameters
subject to perturbation, related to TC (red), RE (blue), and synaptic (purple) properties. Six biophysical parameters (4
synaptic and 2 cellular) were background excitatory AMPA conductances (gTC

ext,E and gRE
ext,E), cellular calcium conductances

(gTC
Ca and gRE

Ca ), and the synaptic connections between TC and RE populations (gTC→RE
AMPA and gRE→TC

GABA ). (B) (Bottom)
Sensitivity value of seven dynamical and computational features to various perturbations. Feature selectivity is defined as
the ratio of the proportional change in the feature to the proportional change in the parameter. A feature sensitivity of 1
means a 1% perturbation would drive a 1% change in the feature. (Top) Mean feature sensitivity amplitude across features
for each perturbation. Averaging across all features, the RE-specific parameters generated greater feature sensitivities
than did TC-specific or synaptic parameters. This finding is consistent with the conclusion that RE neurons are a potent
site for modulation of thalamic processing, as well as with proposals that RE neurons may be a site of vulnerability. (B)
(Right) Weights of the first singular vector (SV1) of the feature selectivity matrix, in terms of the feature components,
derived from singular value decomposition (SVD). SVD is essentially principal component analysis but without mean
subtraction (see Methods). The singular vectors from SVD associated with the top k singular values define the closest
approximation to the feature sensitivity matrix by a rank-k matrix. Considering each of the six perturbations as a point in the
seven-dimensional space of features, SV1, the leading singular vector, defines the axis in feature space that maximally
captures the patterns of feature alterations across perturbations. (C) Explained power of the leading singular vectors.
SV1 explains 85% of the power in feature sensitivity matrix across perturbations, revealing a quasi-one-dimensional
effect of biophysical perturbations on the set of features. In the right panel of (B), the weights of SV1 are all the same
sign, indicating that all features increase or decrease together along this axis. (D) SV1 scores of the perturbations (i.e.
projections of the perturbation vector along SV1). TC perturbations vs. RE perturbations are separated, revealing the
quasi-one-dimensional dependence of the circuit on perturbation to excitation-inhibition balance.
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Figure S6: Analysis on MGBv and A1 recordings. (A) SVM decoder based on MGBv neuronal firing activities evoked
by their preferred and nonpreferred stimuli. The SVM here was trained by trials from both “attend to audition” and “attend
to vision” conditions. Target sounds were more easily classified during “attend to audition” trials compared with “attend to
vision” trials (Wilcoxon test, p < 0.001; N=2 mice, n=52 neurons). (B,C) Miss likelihood (when stimulus present) and false
alarm likelihood (when stimulus absent) of the SVM classifier. Both misses and false alarms were reduced in the “attend
to audition” condition, relative to “attend to vision” (Wilcoxon test, p < 0.001). (D) Schematic of how the peri-stimulus-time
histograms (PSTHs) of target A1 neurons are related to MGBv neurons, here fit with a time lag between areas (see
Methods). (E) Cosine similarity between mapping weights from MGBv to A1 neurons and four coding axes, across a
range of time lags. The relationships were robust, in that the signs (positive/negative) of similarities remained consistent
across different time lags. (F) Cosine similarity between mapping weights from MGBv to A1 neurons and coding axes
obtained in Figure 5. Here, different from Figure 6F, the mapping weights were calculated with a Poisson generalized
linear model (GLM) (see Methods). Consistent with the linear regression results in Figure 6F, here we found that mapping
weights have a positive similarity with the decoder axis. Mapping weights have a positive, negative, and positive similarity
with bottom-up, top-down, and interaction axis, respectively (Mann-Whitney U test, p < 0.001). (G) Same as in (E) but
here using the Poisson GLM method. The relationships are robust in keeping the same sign when using the Poisson GLM
method.
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