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It is hypothesized that cortical neuronal circuits operate in a global balanced state, i.e.,

the majority of neurons fire irregularly by receiving balanced inputs of excitation and

inhibition. Meanwhile, it has been observed in experiments that sensory information is

often sparsely encoded by only a small set of firing neurons, while neurons in the rest

of the network are silent. The phenomenon of sparse coding challenges the hypothesis

of a global balanced state in the brain. To reconcile this, here we address the issue of

whether a balanced state can exist in a small number of firing neurons by taking account

of the heterogeneity of network structure such as scale-free and small-world networks.

We propose necessary conditions and show that, under these conditions, for sparsely

but strongly connected heterogeneous networks with various types of single-neuron

dynamics, despite the fact that the whole network receives external inputs, there is

a small active subnetwork (active core) inherently embedded within it. The neurons

in this active core have relatively high firing rates while the neurons in the rest of the

network are quiescent. Surprisingly, although the whole network is heterogeneous and

unbalanced, the active core possesses a balanced state and its connectivity structure is

close to a homogeneous Erdös-Rényi network. The dynamics of the active core can be

well-predicted using the Fokker-Planck equation. Our results suggest that the balanced

state may be maintained by a small group of spiking neurons embedded in a large

heterogeneous network in the brain. The existence of the small active core reconciles the

balanced state and the sparse coding, and also provides a potential dynamical scenario

underlying sparse coding in neuronal networks.

Keywords: balanced state, homogeneous, heterogeneous, active core, sparse coding, Fokker-Planck equation

1. INTRODUCTION

Neuronal firing activity in the cortex can be highly irregular (Britten et al., 1993; Shadlen and
Newsome, 1998; Compte et al., 2003; London et al., 2010). Because the precise timing of spikes may
contain substantial information about the external stimuli, irregular activity may serve as a rich
encoding and processing space for neural computation (Hertz and Prügel-Bennett, 1996; Gütig
and Sompolinsky, 2006; Sussillo and Abbott, 2009; Monteforte and Wolf, 2012). To understand
how the brain processes information, it is important to investigate how such irregularity emerges
in the brain.
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Some studies conclude that irregular firing may be regarded
as noise, thus, conveying little information (Shadlen and
Newsome, 1994; Han et al., 2015). Meanwhile, other studies
show that timing of spikes and the temporal activity patterns
of irregular neuronal firings in vivo are able to convey specific
information (Richmond and Optican, 1990; Pillow et al., 2005;
Whalley, 2013). A germinating mechanism underlying irregular
activity was proposed in the balanced network theory (van
Vreeswijk and Sompolinsky, 1996; Troyer and Miller, 1997;
Vreeswijk and Sompolinsky, 1998; Vogels et al., 2005; Miura
et al., 2007). In a balanced network, sparsely-connected neurons
possess strong architectural coupling but weak pair-correlations
in their activity. The excitatory and inhibitory inputs into each
neuron, on average, dynamically balance, suppressing the mean
of the total input. Consequently, fluctuations of the input become
dynamically dominant, giving rise to irregular firing events of
each neuron. The hallmarks of a balanced network include a
broad and heterogeneous distribution of the single-neuron firing
rate and a linear response of the mean population firing rate to
the external input (Vreeswijk and Sompolinsky, 1998; Mehring
et al., 2003; Renart et al., 2010). Consistent with theoretically
predicted scenarios, certain experimental observations have been
interpreted as consequences of balanced networks. For example,
in vitro, the sustained irregular activity of neurons in slices of the
ferret prefrontal and occipital cortex was shown to be driven by
the balance of proportional excitation and inhibition (Shu et al.,
2003). In vivo, the excitatory and inhibitory inputs to a neuron
in ferret’s prefrontal cortex were also found to be dynamically
balanced (Haider et al., 2006).

As shown in recent experimental data, the structure of
developing hippocampal networks in rats and mice conforms to
a scale-free (SF) topology, with the number of connections per
neuron following a power-law distribution (Bonifazi et al., 2009).
Bidirectional and clustered three-neuron connection motifs were
experimentally observed to occur with a frequency significantly
above chance in the visual system (Song et al., 2005), thus
strongly deviating from statistically homogeneous networks. The
network in the somatosensory cortex of neonatal animals was
found to be a small-world (SW) network (Perin et al., 2011),
that is, its connectivity has properties of high clustering and
short average path lengths (Newman, 2003b). These experimental
observations show that the neuronal cortical connectivity is
rather heterogeneous. Therefore, in this work, we investigate the
influence of the wide distribution of the recurrent connectivity
on neuronal network dynamics.

In general, it is theoretically challenging to understand
the dynamical consequences of these complex network
architectures (Boccaletti et al., 2006). Several studies have
explored the dynamics of networks with heterogeneous
connections. For instance, in Roxin (2011), the role of the
broad degree distribution on the correlation of synaptic currents
has been investigated. In addition, it has been observed that,
in a heterogeneous network, a neuron with more presynaptic
connections tends to fire less (Pyle and Rosenbaum, 2016). In
a recent study (Landau et al., 2016), it has been found that a
heterogeneous network is unbalanced in general because some
neurons either never fire or fire fairly regularly in the network.

The balanced state of the entire network (the global balanced
state) can be achieved by setting strong correlations among
the presynaptic excitatory, presynaptic inhibitory, and external
inputs for each neuron, or through incorporating adaptation
and plasticity into the dynamics of each neuron (Landau et al.,
2016).

Theoretical and computational works so far have mainly
focused on the global balanced state, i.e., each neuron in
the network fires irregularly by receiving balanced excitation
and inhibition. However, experimental studies have shown that
information is often encoded by the firing of a relatively small
set of neurons in the population, whereas other neurons in the
network do not fire at all. This phenomenon is often referred
to as sparse coding and has been observed in many cortical
regions. For instance, sparse firing activity has been observed in
the barrel cortex of mice (O’Connor et al., 2010), the auditory
cortex of rats (Hromádka et al., 2008), and the primary olfactory
cortex of rats (Poo and Isaacson, 2009), which is elicited by
a variety of stimuli. Because a large proportion of neurons
is silent during information processing, it is suggested that
the global balanced state may not commonly exist in cortical
regions.

Based on all the above observations, there are several
important issues that remain to be clarified: whether the small
group of those active neurons embedded in large heterogeneous
neuronal networks can be in a balanced state and, if so, how
such a balanced sate in the active subnetwork of heterogeneous
networks differs from a global balanced state in homogeneous
networks; whether the existence of a balanced active subnetwork
sensitively depends on the topology of complex networks; what
dynamical characteristics those active neurons have in order
to maintain a balanced state in heterogeneous networks; how
a balanced active subnetwork emerges from heterogeneous
network dynamics; and what the dynamical implications of a
balanced active subnetwork has for general complex networks.
Below we will address these issues by investigating both the
SF networks and SW networks with various types of single-
node dynamics. Note that the definition of the SF network in
our simulations deviates from the exact definition in which a
network is called scale-free if its degree distribution exhibits
power-law behavior, at least in its upper tail, i.e., P(k) ∝ k−γ as
k → +∞ (Reed, 2006). In numerical simulations, the power-
law degree distribution we use takes the form as P(k) ∝ k−γ for
k ∈ [K0,K1]. Here, the degree of each neuron has a lower bound
K0 determined as K0 ≈ 0.95%N according to an experimental
observation (Bonifazi et al., 2009), where N is the network size.
In addition, the degree of each neuron also has an upper bound
K1 determined by Equations (8–10) to ensure that the network
is sparsely connected. Because the mean connectivity of a sparse
network is much smaller that the network size, the value of K1 is
smaller than N.

2. RESULTS

To contrast with networks of heterogeneous topologies below, we
first recapitulate the balanced state in a homogeneous network,
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i.e., an Erdös-Rényi (ER) network of binary neurons (Vreeswijk
and Sompolinsky, 1998). In this balanced network, an important
feature of its connectivity structure is that neurons are sparsely
connected with strong synaptic strength. As discussed in
section 4 specifically, the average number of connections K to
each neuron from both presynaptic excitatory and presynaptic
inhibitory populations is much smaller than the total number of
neurons in the network, and the coupling strength is of the order
1/
√
K. This scaling ensures persistent fluctuations of inputs in

the large-K limit.
As shown in Figure S1, the hallmarks of the balanced state

in a homogeneous neuronal network are summarized as follows:
balanced net input, irregular activity, stationary population-
averaged activity, heterogeneity of firing rate, linear response. A
detailed description of the properties can be found in Figure S1

(Supplementary Material). All the balanced phenomena in
the binary model can be demonstrated analytically from the
standpoint of the classical balanced network theory (Vreeswijk
and Sompolinsky, 1998). Note that both the theory and
simulations are based on the assumptions that the network is
homogeneous, i.e., of the ER type, and that the neuron is of
the binary type. These assumptions are high simplifications of
the biological reality. Biological neuronal networks tend not to
be homogeneous, e.g., the connections can be of SF (Scannell
et al., 1999; Sporns et al., 2004, 2007; Kaiser et al., 2007) or
SW type (Sporns and Zwi, 2004; Sporns, 2006; Perin et al.,
2011). In general, it is expected that the topology could strongly
influence the dynamics of neuronal networks (Shkarayev et al.,
2009). A natural and important extension of the theory is to
examine the existence of a balanced state in heterogeneous
networks. In the following, we first investigate the SF neuronal
network, then discuss the case of the SW network. As an
extension to the binary neuron model, we resort to the I&F
model in our simulation (Carandini et al., 1996; Rauch et al.,
2003; Cai et al., 2005; Rangan et al., 2005; Zhou et al., 2009,
2013).

2.1. Uncorrelated SF Network With I&F
Neurons
In this section, we address the question of whether there exists
balanced-network dynamics in an uncorrelated SF network using
the current-based I&F neuronal model coupled with delta-pulse
synaptic currents. This model is computationally simple but
biologically more realistic than the binary model (the model
details can be found in section 4).

Here, we focus on the SF topology with uncorrelated in-degree
between neighboring neurons, and generate the SF networks
with a given mean connectivity 2K (each neuron on average has
K presynaptic excitatory neurons and K presynaptic inhibitory
neurons). A network is called scale-free if its degree distribution
exhibits power-law behavior, at least in its upper tail, i.e., P(k) ∝
k−γ as k → +∞ (Reed, 2006). It should be pointed out that the
mean connectivity 2K and the decay exponent γ of the power-
law distribution are the two main factors that determine the SF
network connectivity structure (details can be seen in section 4.
We again invoke the coupling strength of order 1/

√
K to ensure

that the network is fluctuation-driven when K is large. For each
neuron in the network, the number of its presynaptic excitatory
neurons is set to be highly correlated with that of presynaptic
inhibitory neurons, consistent with the setting in the classic ER
network as well as the experimental observation (Liu, 2004). The
external input to each neuron is allowed to be uncorrelated with
the cortical input, which will lead to the break of the global
balanced state. However, it remains unclear whether a balanced
state can exist in the subgroup consisting of the active neurons in
such a network.

Our simulation results lead to the conclusion that only a
group of neurons in this SF network can have firing activity and
their dynamics follow a balanced state with all its hallmarks. In
Figures 1A,B, we illustrate an example of the balance between the
excitatory and inhibitory synaptic inputs to the firing neurons.
We report the synaptic input at each moment by its time average
within a small time window—we select a time bin of 2.5 ms. As
shown in Figure S2, we can observe that the net input of each
firing neuron can have a relatively small amplitude due to the
cancellation of its excitatory and inhibitory parts. In addition, the
firing rate of each individual active neuron is linearly correlated
with its time-averaged net input, which is consistent with a
recent study (Argaman and Golomb, 2018). Just as for neurons
in the homogeneous balanced network, the CV value as shown in
Figure 1C for the ISIs of each spiking neuron in the SF network
is broadly distributed. This is consistent with the irregular
activity of these neurons with heterogeneous connectivity. As
shown in Figure 1D, the population activity is asynchronous and
stationary as the percentage of firing neurons fluctuates in time
around a constant with a small amplitude. In Figure 1E, we show
that strong heterogeneity is captured by the bimodal distribution
of the single-neuron firing rate. Compared with the distribution
of firing rate in the homogeneous system (Figure S1E), the firing
rate distribution in the SF case manifests a sharp peak near the
origin (blue bar). Our result shows that there exists a group
of neurons with no firing activity (we will further discuss the
significance of this phenomenon below). We point out that a
group of neurons with no firing activity has been previously
found in other heterogeneous networks, e.g., the network with
broad Gaussian distributions of degrees (Landau et al., 2016;
Argaman and Golomb, 2018). Finally, in Figure 1F, we show the
linear response of both the excitatory and inhibitory populations
to the external rate. These features still exist asymptotically as
the size of the network increases. In particular, the fluctuations
of the synaptic currents received by active neurons do not
vanish but are kept as order one, even for very large network
size (Figure S3). To summarize, by the above hallmarks of
the balanced state, the stationary state of those neurons with
firing activity in the SF I&F neuronal network with delta-
pulse synaptic currents can be readily identified as a balanced
state.

2.2. Quiescent and Active Groups in the SF
Network
As shown in Figure 1E, we find that the neuronal dynamics
of SF networks separate the neuronal population into two

Frontiers in Computational Neuroscience | www.frontiersin.org 3 January 2019 | Volume 12 | Article 109

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Gu et al. Balanced Active Core

FIGURE 1 | Properties of an SF balanced network with pulse-current-based I&F neurons. (A) The balanced excitatory and inhibitory inputs into a sample neuron

(transient dynamics have been removed). The magnitudes of the excitatory (red) and inhibitory (blue) inputs (scaled by the leakage conductance gL) stay far away from

the firing threshold (green), whereas the total input (black) (scaled by gL) crosses the threshold stochastically with its mean (magenta, the value is 0.29) remaining

below the threshold; (B) The probability density functions of the excitatory (red), inhibitory (blue) and total (black) inputs (scaled by gL) for the sample neuron in (A). The

green line is the threshold; (C) The distribution of the CV value. Here, CV is calculated from the ISIs of each neuron; (D) The upper panel is the raster plot of a partial

network (100 sample neurons selected at random from the network, with a time evolution of 300 ms), which exhibits asynchronous neuronal activity; the lower panel

shows the percentage of the firing neurons over the network in each time window, where the time window is 2.5 ms. The transient dynamics have been removed; (E)

The log-histogram of neuronal firing rates (normalized by the mean firing rate averaged across the entire network). The blue bar encodes quiescent neurons, and the

red bars encode neurons with non-zero firing rates; (F) The mean firing rate of the excitatory (red) and inhibitory (blue) populations as a linear function of the external

input. Here, NE = NI = 2× 104 and K = 400. In panels (A–E), ν0 = 15 Hz. Other parameters are specified in section 4.

subnetworks in our simulations: one consisting of neurons
that fire no spikes (blue bar), which will be referred to as
the quiescent group; the other consisting of firing neurons
(red bar), referred to as the active group (core). Subsequently,
we investigate the mechanism underlying how the SF network
system evolves into these two different groups and what
are the characteristics of dynamics for neurons in these two
groups.

In a balanced network, the excitatory and inhibitory inputs
to each neuron need to approximately cancel each other.
Therefore, the mean-field balanced conditions in the large-
K limit shall hold (Vreeswijk and Sompolinsky, 1998) as
follows:

KJEEmE + fEνE = −KJEImI ,

KJIEmE + fIνI = −KJIImI ,
(1)

where mα is the mean firing rate of the αth population, Jαβ

is the coupling strength from the βth population to the αth
population, and fα and να are the strength and the rate of the
external Poisson input to the αth population for α,β = E, I.
As shown in Figure 2A, the excitatory and inhibtory inputs

are indeed proportional to each other in both the active and
quiescent groups. This is consistent with a recent experimental
observation (Xue et al., 2014). In addition, it can be clearly
observed that the quiescent group is strongly inhibited because
the inhibitory input in the quiescent group is more than twice
that in the active group given the same excitatory input. By
calculating the time-averaged total input to a neuron normalized
by its standard deviation and denoting as ϑ , it is clear from
Figure 2B that the distribution of ϑ has a long negative tail
for the quiescent group. Consequently, rarely can fluctuations
drive their membrane potentials across the threshold. Note
that the distribution of ϑ is concentrated around zero for the
active group, thus indicating the neurons in the active group
have fluctuation-dominated inputs. In addition, the fact that
the quiescent group is strongly inhibited can also be reflected
in the cross-correlation structure between the excitatory and
inhibitory synaptic inputs to each neuron in the quiescent
group (Roxin, 2011). As shown in Figure S4A, the average
cross-correlation is higher for neurons in the quiescent group
than that in the active group, indicating that the increase of
the excitatory input is quickly followed and canceled by the
inhibitory input such that a neuron in the quiescent group is
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FIGURE 2 | The subgroups in the SF network. (A) The excitatory and inhibitory inputs (normalized by gL) into active neurons (red dots) and quiescent neurons (blue

dots). The upper panel is for the excitatory population with slopes of −1 (red line) and −2.35 (blue line). The lower panel is for the inhibitory population with slopes of

−1 (red line) and −2.11 (blue line). Red and blue lines are linear fitting of the red and blue dots respectively. Here, we select 1,000 active and 1,000 inactive neurons

randomly for the plot; (B) The distribution of ϑ as the time average of the total input into each neuron normalized by its standard deviation. Blue line is for the

quiescent subgroup, and red line is for the active subgroup; (C) The degree distributions of the entire network (black solid line) and that of neurons in the quiescent

group for different coupling strength ratio φ = JEI/JEE . The insert is the log-log plot for the same distributions. In our simulations, we fix JII/JEI = 0.9. Here, φ = 3 for

the blue solid line, φ = 2 for the red solid line, φ = 1.5 for the green solid line, and φ = 1.2 for the magenta solid line. The distributions agree with one another in the

region of large degrees. Data in (A,B) are from the case in Figure 1.

more inhibited than a neuron in the active group at eachmoment.
Therefore, neurons in the quiescent group are not in the balanced
state.

Next, we investigate the issue of how the coupling strength
of the network affects the emergence of the active group. In
particular, we focus on the competition between the excitatory
and inhibitory coupling strength quantified by the ratio φ =
JEI/JEE with fixed JII/JEI . In our simulation, we fix the
network topology while varying the value of φ. Note that the
degree distribution of the entire network is given by an SF
network construction, thus independent of φ; while the degree
distribution of the active group depends on φ — different
coupling strengths give rise to different dynamics, which in turn
generate different active subnetworks dynamically. Figure 2C
displays the degree distribution of the entire network and those
of the quiescent groups with different values of φ. It is important
to observe that these degree distributions agree with one another
in the region of large degrees, that is, the quiescent group tends
to be composed of the neurons with a large degree. This is
consistent with a recent observation (Pyle and Rosenbaum, 2016)
that a neuron with a larger degree tends to fire less. Because
the neurons in the quiescent group have large degrees, each
pair of them tend to share a large amount of common inputs.
As shown in Figures S4B,C, by calculating the cross-correlation
between the excitatory inputs or inhibitory inputs received by
two neurons from the same group, we find that the average cross-
correlation value between two inputs of the same type (excitatory
or inhibitory) across all pairs of neurons in the quiescent
group is indeed significantly greater than that in the active
group.

Next, we deploy the coarse-grained approach to further
deepen our understanding of the dynamics in this SF
system.

2.3. Fokker-Planck Analysis of the SF
Network Dynamics
From the mean-field balanced conditions (1), one can obtain the
relationship between the population-averaged mean firing rate
and the external drive:

mE =
1

K

JII fEνE − JEI fIνI

JEIJIE − JIIJEE
, mI =

1

K

JIEfEνE − JEEfIνI

JEIJIE − JIIJEE
. (2)

As shown in Figure 3A, the predictions of the balanced
conditions Equation (2) cannot adequately capture the linear
response of the population-averaged mean firing rates to the
external inputs obtained in the simulation. To understand
quantitatively the influence of the degree heterogeneity of
the SF network, we perform the analysis of the Fokker-
Planck (FP) equations corresponding to the network dynamics
below.

As shown in Figure 3B, we first note that the firing events
between neurons are extremely weakly correlated in the SF
network. Therefore, the input into each neuron in the system can
be regarded as three Poisson trains (Cinlar, 1972): the external,
the excitatory, and the inhibitory synaptic inputs. Accordingly,
we can derive the FP equation to describe the dynamics of an
I&F neuron with Poisson inputs (Brunel, 2000; Cai et al., 2006).
To derive the FP equation for a group of coupled neurons, we
need to take the structure of the SF network into account (see
section 4 for details). By treating all the neurons that possess the
same number of presynaptic neurons as one ensemble, we then
derive the FP equation for each ensemble and further obtain its
stationary-state solution. We find that the mean firing ratemk for
the kth ensemble decays exponentially with the neuronal degree k
in that ensemble. Consequently, neurons with a sufficiently large
degree will not fire or have extremely low firing rates that can
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FIGURE 3 | Theoretical analysis of the SF network. (A) Gain curves. The black solid line is obtained from the balanced condition. The theoretical gain curves for the

excitatory and inhibitory populations overlap. The red dots (excitatory population) and blue dots (inhibitory population) are obtained from the simulation; (B) The

distribution of the cross-correlation coefficient between spike trains of all pairs of neurons in the entire network. It is narrowly centered around zero; (C) The mean firing

rate of each neuron ensemble as a function of its degree. Red dots and blue dots are from the simulation. The red and blue lines are obtained from the FP

approximation by Equation (22). Red and blue colors encode excitatory and inhibitory populations, respectively. Data in panels (A–C) are from the case in Figure 1.

barely be detected in numerical results with a finite simulation
time, thus they will be classified into the quiescent group. The
exponential decay of the firing rate from the FP analysis has
been further verified in numerical simulations as shown in
Figure 3C.

2.4. Balanced Active Core and Conditions
for Its Existence
From the above discussion, it can be clearly seen that the
entire SF network is unbalanced, whereas the active subnetwork
is balanced. We now focus on the balanced subnetwork that
contains only the active neurons and the connectivity structure
of these neurons. We will refer to this subnetwork as an
active core, which captures the spiking activity and the effective
communication of the entire neuronal network.

We first investigate the issue of how to quantitatively
characterize the features of the active core. From Figure 4A, it
is important to note that the degree distribution of the neurons
in the active core is sharply peaked, resembling that of neurons
in homogeneous networks. Why does the degree distribution
of the active core in the heterogeneous SF network possess the
characteristics of a homogeneous ER network? For each neuron,
we first examine the fraction of its active presynaptic neurons
amongst all its presynaptic neurons, which will be denoted as p
below. The distribution of p as shown in the insert of Figure 4A
is sufficiently narrow to be approximated as a constant. In
general, the value p will be affected by the E-I input strength
ratio φ and the decay exponent of the degree distribution γ ,
as shown in Figure S5. Note that, for each neuron, p can also
be viewed as the probability of finding one of its presynaptic
neurons to be active. The probability of finding a neuron with
w active presynaptic neurons can then be derived from the
law of total probability, P(w) =

∑

k P(k)P(w|k), where P(k)
is the probability of finding a neuron having k presynaptic
neurons, as the case here, whose distribution follows a power-
law, P(k) = ck−γ . By ignoring the correlation between the degree
distribution of the active core and the formation of the active

core, the conditional probability P(w|k) can be approximated
by a binomial distribution P(w|k) = Cw

k
pw(1 − p)k−w. Further

approximating the binomial distribution by a Gaussian, we can
derive an approximation for P(w):

P(w) ≈
∑

k

ck−γ 1
√

2πkp(1− p)
exp

[

−
(w− pk)2

2kp(1− p)

]

. (3)

The probability P(w) is a sum of a series of Gaussian terms with
the coefficient of each term weighted by k−γ . Therefore, a larger
value of k has a smaller contribution to the sum. In particular, for
sufficiently large γ , the dominant term can exactly be a Gaussian.
When γ is O(1) as set in our simulations, the degree distribution
of the active core still resembles a Gaussian and can be captured
by Equation (3). As shown in Figure 4A and Figures S5B–D,
the prediction by Equation (3) is in very good agreement with the
measured degree distribution of the active core for various values
of γ .

Denoting the size and mean connectivity (in-degree) in the
active core as Nactive and Kactive respectively, we next examine
the relationship between Nactive and N as well as Kactive and
K. Recall that K is the average presynaptic connectivity of the
original SF network. Numerically, as shown in Figure 4B, Nactive

and Kactive increase linearly with N and K respectively. As a
consequence, when K → +∞,N → +∞, we also have
Kactive → +∞,Nactive → +∞. Therefore, the dynamics of the
active core possess the same asymptotic behaviors as those of an
ER network in the large-K limit.

By considering the active core as a homogeneous network,
we can numerically solve its population-averaged mean firing
rate from the following equations derived from the balanced
condition in the large-K (Kactive) limit

mactive,E =
1

Kactive

JII fEνE − JEI fIνI

JEIJIE − JIIJEE
,

mactive,I =
1

Kactive

JIEfEνE − JEEfIνI

JEIJIE − JIIJEE
,

(4)
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FIGURE 4 | Properties of the active core. (A) The degree distribution in the active core. Numerical results (blue bars) can be well fitted by our prediction (Equation 3,

red line). The insert is the distribution of p from the numerical simulation. For any single neuron, p is the fraction of the number of its active presynaptic neurons over

the number of its total presynaptic neurons. The distribution is narrowly centered around a constant; (B) Relationship between the active core size and the network

size. In the simulations, the sparsity K/N = 0.025 is fixed, while N and K vary in different cases. In each network of different size, we choose K0 ≈ 0.95%N, and the

value of K1 according to Equation (8). The size (upper) and the mean connectivity (lower) of the active core both grow linearly with those of the entire network. The

black solid line is a linear fitting of the simulation results (blue dots), with R2 = 0.993 for the upper panel and R2 = 0.990 for the lower panel; (C) The linear population

response to the external drive in the active core. Black solid line is the prediction from the mean-field balanced conditions in the active core. Red (excitatory

population) and blue (inhibitory population) dots are obtained from the simulation results. Data in (A,C) is from the case shown in Figure 1.

where the averaged connectivity of the active core Kactive is read
out from the simulation. As shown in Figure 4C, the linear
response property of the active core can be well-captured by
the predictions from Equation (4). The successful prediction
also suggests the validity of the assumption in the analysis
that the active core can be viewed as a balanced homogeneous
network.

Note that the active core encompasses all spike events in the
SF neuronal network, with connectivity similar to that of an ER
network. The characteristics of the balanced state persist in the
active core, that is the properties of balanced net input, irregular
activity, stationary population-averaged activity, heterogeneity of
firing rate, and linear response all hold. Clearly, our results
demonstrate that there exists a balanced active core in the SF
neuronal network.

Next, through theoretical analysis and numerical simulations,
we have found that, in order to obtain the balanced active core,
the following three conditions shall hold:

(1) The cortical and external input strengths shall satisfy the
following relation

fEνE

fIνI
>

JEI

JII
> 1, (5)

which can be derived from the balanced condition (Equation
4) by requiring the firing rates to be positive values and setting
JIE = JEE for simplicity. Note that Equation (5) is consistent
with the conditions derived from a homogeneous network
(Vreeswijk and Sompolinsky, 1998).

(2) The excitatory and inhibitory in-degrees for each neuron
shall be highly correlated. This condition is consistent with
the experimental observation that a conserved ratio of the
numbers of excitatory and inhibitory synapses has been
observed throughout the dendrites of cultured hippocampal
neurons (Liu, 2004).

(3) The smallest degree K0 in the network is required to be the
same order as the population-averaged degree K. In fact, by
analyzing the FP equation of the neuronal ensemble with the
smallest degree K0, the total input to each neuron in this
ensemble shall be close to zero in order to achieve the balance
between the excitatory and inhibitory inputs, i.e.,

fKν0 + JαE
Ŵ

1+ Ŵ
rEK0 − JαI

1

1+ Ŵ
rIK0 ≈ 0, (6)

where f is the external input strength, ν0, rE, and rI are
the average firing rates of the presynaptic external, cortical
excitatory, and cortical inhibitory neuronal populations,
respectively, K is the number of the presynaptic external
neurons identical to the mean connectivity of the SF network,
Ŵ is the ratio between the number of each neuron’s presynaptic
excitatory neurons to the number of each neuron’s presynaptic
inhibitory neurons. Because f , JαE, and JαI are of order
O(1/

√
K), ν0, rE, rI , and Ŵ are of order O(1), K0 is required

to be the same order as K in order to make the total input
canceled out.

As one example shown in Figure 5A, breaking the first condition
results in the synchronous state of the network. In addition,
as shown in Figure 5B, breaking the second or third condition
results in the deviation of the ratio from excitatory to inhibitory
current input to neurons in the active group from unity, which
obviously breaks the balanced input condition and the balanced
state of the subnetwork as a consequence. In order to keep
the excitation and inhibition balanced in the active neurons,
it requires sufficiently high correlation between the numbers
of excitatory and inhibitory presynaptic connections as shown
in Figure 5C. Note that these conditions for the existence of
the balanced active core are different from that proposed by
the previous works for the existence of the global balanced
state (Landau et al., 2016), in which the number of cortical
inhibitory input is required to be correlated with both the
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FIGURE 5 | Conditions for the existence of the balanced active core. (A) Synchronized network dynamics induced by the break of balanced condition (1). In the

simulation, JEI = 1.8/
√
K, JII = 2.0/

√
K, fEνE = 15

√
K and fIνI = 12

√
K, where K = 400. The raster plot (upper panel) and the percentage of firing neurons over time

indicate the synchronous dynamics in the system. Red and blue color encode the excitatory and inhibitory population, respectively; (B) The distributions of E-I current

ratio in SF networks satisfying all the three conditions (black), after breaking condition (2) (blue), and after breaking condition (3) (red). The blue curve is plotted by

setting the cross-correlation coefficient of the presynaptic excitatory degree and inhibitory degree as 0.2; and the red curve is plotted by setting K0 = 80,K = 400; (C)

The ratio distribution corresponding to the SF network with different cross-correlation coefficients of the presynaptic excitatory degree and inhibitory degree. The

cross-correlation coefficient equals 0.99 (black), 0.8 (red), 0.6 (green), 0.4 (magenta), and 0.2 (blue).

number of cortical excitatory inputs and the number of external
inputs. In contrast, the existence of a balanced active core
only requires that the number of cortical inhibitory inputs be
correlated with that of cortical excitatory input but not that of
external input.

2.5. Correlated SF Networks With I&F
Neurons
Because the architectural degree-correlation may play an
important role in the dynamics of a system (Shkarayev et al.,
2009), we generate SF networks with degree-correlation between
neighboring nodes using a reshuffling strategy (Xulvi-Brunet and
Sokolov, 2005). A balanced active core can still arise in correlated
SF neuronal networks. An example is shown in Figure S6, in
which the five hallmarks of balanced net input, irregular activity,
stationary population-averaged activity, heterogeneity of firing
rate, and linear response again perseverate robustly. The degree
distribution exponent γ of the SF network used here is γ = 2.6,
which is the same as that of the SF network for the uncorrelated
case reported above (Figure 1). The degree correlation coefficient
for the SF network in Figure S6 is ρ = 0.03. Similar to an SF
network without degree correlation, the distribution of single
neuron firing rates also possesses a high peak at zero. The SF
network with degree correlation can also be decomposed into
two subnetworks of distinct dynamics characterized by their
firing rates. Figure S7B demonstrates that the structure of the
corresponding active core also displays that of homogeneous
networks.

By generating SF networks with different correlation
coefficients and with γ = 2.6, all these SF systems exhibit
dynamics with a balanced active core. The degree distribution of
the active core can be successfully described by Equation (3) for
all values of ρ ranging from −0.3 to 0.31 as shown in Figure S7.
The properties of the dynamics in these active cores are again
similar to those of an ER balanced network.

In summary, our results show that the degree correlation
between different nodes does not affect the properties of the
balanced active core in SF networks. For SF neuronal networks
with degree correlations, the existence of the active core persists
with the structure similar to that of an ER network and the active
core possesses all the characteristics of the balanced state.

3. DISCUSSION

In this work, we have shown that a sparsely but strongly
connected SF network of I&F neurons can reach the balanced
state in the active subgroup if the network satisfies three
conditions: the inequality of the ratio of external and coupling
strength between excitation and inhibition, high correlation
between the numbers of presynaptic cortical excitatory and
presynaptic cortical inhibitory neurons for each neuron, and
the order of the smallest degree K0 being the same as that
of the population averaged degree K. Despite the fact that all
neurons in the SF network receive external inputs, the network
is naturally separated into two subnetworks: one is the quiescent
group consisting of silent neurons and the other is the active
group consisting of neurons with non-zero firing rates. The
separation of active and quiescent subgroups has also been
observed in other heterogeneous networks with broad Gaussian
degree distributions (Landau et al., 2016; Argaman and Golomb,
2018). The subnetwork consisting of all the active neurons
with the connections between these neurons is then defined
as the active core here. From our simulation, this active core
possesses a degree-distribution characteristic of a homogeneous
ER network, which can be described well by our theoretical
analysis (Equation 3). In addition, the active core displays similar
dynamical properties of the balanced state of an ER network
(Figures 1, 4).

In addition, our results suggest that the balanced active core
can be found in various heterogeneous networks as the results
shown below. We also find that the silent neurons always possess
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larger degrees than the active neurons. This can be understood
intuitively as follows: if the number of in-degrees in the external
input is fixed, and the ratio of the numbers of excitatory and
inhibitory synapses is maintained, neurons in the heterogeneous
network that receive a large number of recurrent connections
receive effectively more inhibition and are therefore silent.

3.1. Balanced Active Core in Other
Networks
In addition to the pulse-coupled I&F neurons, for the SF network
of either binary neurons or smooth-current-based I&F neurons,
as shown in Figures S8–S10, the balanced active core also can
be found. These results imply that the existence of the balanced
active core is robust with respect to detailed single-neuron
dynamics.

It has been shown that different architectural degree-
correlations can induce different dynamical properties in SF
networks (Krapivsky and Redner, 2001). These correlations can
strongly influence the dynamics of the system (Shkarayev et al.,
2009). However, as far as the balanced state is concerned, there
still exists a balanced active core in SF neuronal networks with
degree correlations as shown in Figures S6, S7, in which an ER-
like active core controls its dynamics. In addition, the properties
of the balanced state have been studied for various SF networks
with a different decay exponent of degree distribution γ . As
shown in Figures S5, S11–S13, the value of γ does not affect the
existence of the balanced active core, but affects the size of the
active core.

As is shown that certain neuronal networks in the brain
exhibit small-world (SW) characteristics (Perin et al., 2011),
we have also conducted simulations with SW connectivity. An
active core of the balanced dynamics is again observed in
the SW neuronal network with different rewiring probabilities
(Figure S14). The degree distribution in the active core is
still close to that of an ER network. Our results suggest
that the balanced state embedded in the active core may
broadly exist for various heterogeneous networks (Figure 4 and
Figures S5, S7, S10, S14).

3.2. Heterogeneity in External Input
Accounting for the fact that the external inputs may vary
from neuron to neuron, we have also examined the case of
heterogeneous inputs in the simulation. Here, we choose the rate
of the external input to the ith neuron in the αth population
νiα from a Gaussian probability distribution with its mean να

and standard deviation CV·να for α = E, I, where CV is
the coefficient of variation. As shown in Figure S15, for CV
ranging from 0.1 to 0.4, we can still observe the existence of the
active core, in which neurons receive balanced excitatory and
inhibitory inputs. This indicates that the the broadly-distributed
external input may not affect the existence of the active core
(Figure S16).

In addition, Figures S17A,B provides an example of the
heterogeneous strength of the external input following a log-
normal distribution (Song et al., 2005) with a uniformly-
distributed rate for different neurons. For this case, the
dynamics still manifest a balanced active core whose in-degree

distribution is again in excellent agreement with the prediction
of Equation (3) shown in Figure S17C. These results may
suggest that the active core can exist for various external
inputs.

3.3. Biological Relevance of the Balanced
Active Core
Many neuronal networks in the brain exhibit statistically
heterogeneous connectivity structures. It has been observed that
the connections of the neurons in layer 5 of the rat visual
cortex display various highly clustered three-neuron connectivity
patterns (Song et al., 2005). In addition, neuronal connectivity
has been found to possess SF properties in rat hippocampal
networks (Bonifazi et al., 2009). The network connectivity
between neurons in the somatosensory cortex of neonatal
animals possesses the attributes of a SW network (Perin et al.,
2011).

In addition, experimental studies have shown that there often
exists a small subnetwork of highly active neurons along with
a large proportion of neurons being silent in neocortex of the
brain. For example, during a head-fixed object localization task,
only about half of all the neurons in a barrel column have been
found to fire (O’Connor et al., 2010). Experimental recordings in
the primary auditory cortex of unanesthetized rats have shown
that 50% of the neural population failed to respond to any of
the simple stimuli (Hromádka et al., 2008). Furthermore, in vivo,
each odor can only evoke the activity of about 10% of neurons
from anterior piriform cortex Layer 2/3 (Poo and Isaacson,
2009).

Our results show that, starting from heterogeneous network
connectivity, the emergent network dynamics naturally captures
the phenomenon of sparse coding and balanced inputs in a group
of neurons. In contrast, in the traditional theory of a balanced
network, the majority of neurons are balanced and thus fire
actively. Therefore, in such a network, information can hardly
be encoded by only a few of active neurons with the other
neurons being quiescent. Note that, in order to achieve a balanced
active core, our model assumes that the numbers of cortical
excitatory and inhibitory inputs should be highly correlated,
which has been supported by experimental observation (Liu,
2004).

3.4. Comparison With Previous Studies
Several studies have explored the dynamics of networks
with heterogeneous connections. For example, in a recent
study (Landau et al., 2016), there has been found a large
fraction of neurons silent in the networks with sufficiently broad
degree distributions. Moreover, it has been demonstrated that
a heterogeneous network cannot reach a global balanced state
in general when the cortical excitatory, cortical inhibitory and
external in-degrees are uncorrelated, because some neurons
either never fire or fire fairly regularly in the network (Landau
et al., 2016). To achieve the global balanced state, the authors
introduced adaptation, plasticity, or degree correlation into
the network. In particular, by setting the number of cortical
inhibitory input to be correlated with that of cortical excitatory
input and with that of external excitatory input, the whole
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network will stay in the global balanced state (Landau et al.,
2016), in which all neurons in the network receive balanced
input and fire irregularly. Thus the balanced active group in
such a case is the entire network. Different from their settings,
here we set the correlation only between the numbers of cortical
excitatory and inhibitory inputs, leaving the number of external
input to be uncorrelated, and clearly show the mean firing
rate of each neuron will exponentially decay with its in-degree,
giving rise to the emergence of the active core in the network
consisting of small-degree neurons. In addition, we further
investigate the property of the active core, i.e., the subnetwork
composed of the active neurons, and find that the balanced
state does exist in the active core of the whole network. Our
simulation shows that the balanced active core exists in a variety
of networks with different degree distributions (scale-free, small-
world, and broad Gaussian), while the cortical excitatory inputs
are required to be correlated with cortical inhibitory inputs.
Therefore, the existence of the active core seems not to be
dependent on the degree distribution, but dependent on the
correlation of cortical excitatory and inhibitory inputs. Moreover,
by increasing the correlation between the number of external
inputs and the number of cortical inputs to each neuron, the
size of the active core will increase accordingly. Note that the
increased correlation level has different effects on the active
and quiescent groups. Intuitively, neurons in the active core are
already balanced by its definition, thus the increase of correlation
can only moderate the firing rate of these active neurons but
have little effect on the size of the active core. However, for
neurons in the quiescent group, such as neurons with degree
k, the increase of correlation will drive these neurons toward
the balanced state by satisfying the balanced condition, i.e.,
kf ν0 + kJαErE − kJαIrI ≈ 0. Therefore, as the correlation
level increases, the size of the active core in the network will
increase by recruiting more and more neurons that used to
be in the quiescent group. Eventually, the size of the active
core can be the same as the network size. We note that the
balanced active core can also be found in networks with broad
Gaussian distributions if the numbers of cortical excitatory input
and cortical inhibitory input to each neuron are correlated,
meanwhile they are uncorrelated with the number of the external
input.

In another study (Argaman and Golomb, 2018), they have
investigated a network of 150 inhibitory neurons in the barrel
cortex with heterogeneous connections between each other, and
neurons in this network receive heterogeneous excitatory inputs
from thalamic neurons. The network does not have strong
coupling and sparse connection. In addition, the number of
inhibitory cortical input is set to be uncorrelated with the number
of excitatory input. In this type of modestly-sized network, it has
been found that the fraction of silent neurons is very small, and
most of neurons seem to be in the balanced state. Here we have
investigated strongly coupled but sparsely connected networks
consisting of a large number of both excitatory and inhibitory
neurons. With these different settings, we have shown that there
is a large fraction of silent neurons in the network, and the
balanced state only exists for a small fraction of neurons in the
entire network, i.e., the active core.

Moreover, we have found that the degree distribution of
the active core is close to the homogeneous connectivity
structure. We note in passing that the emergence of the
balanced active core does not naturally result from the high
correlation between the numbers of the cortical excitatory
inputs and the cortical inhibitory inputs. This can be illustrated
by the following facts: first, large-degree neurons with such
high correlation structure fail to reach the balanced state in
general; second, small-degree neurons with such high correlation
structure also fail to reach the balanced state if the network
topology does not satisfy the third condition as discussed in
section 4 (also shown in Figure 5). Another study has used a
similar theoretical framework to investigate the effective gain
in a heterogeneous network (Roxin, 2011). They also treated
neurons with the same in-degree as one ensemble. However,
they directly used the firing-rate-based neuron model, rather
than deriving the FP equation as in our case. Moreover, the
balanced property of the network has not been investigated in
their work. In summary, the finding of the existence of the
balanced active core embedded in a heterogeneous network
distinguishes our work from several studies exploring the
dynamics of networks with heterogeneous connections. Our
work provides a potential dynamical scenario for the emergence
of a balanced active core in a heterogeneous network in the
brain.

4. MATERIALS AND METHODS

4.1. Degree Distribution and Degree
Correlation
In the study of networks, the degree of a node in a network
is the number of connections it has to other nodes. For a
directed network, nodes have two different degrees, the in-degree,
which is the number of incoming edges to a node, and the out-
degree, which is the number of outgoing edges from a node.
In this work, we mainly focus on the in-degree distribution,
and just use degree instead of in-degree in this work for ease
of discussion. The degree distribution P(k) of a network is the
probability of finding a k-node, where the k-node is a node
of degree k. The degree distribution of a directed ER network
follows the Poisson distribution, P(k) = λke−λ/k!, which can be
approximated by a Gaussian distribution for large λ (λ ≫ 1), λ
being the average degree of the network. The degree distribution
of an SF network, by definition, follows a power-law distribution
P(k) ∝ k−γ , γ being the decay exponent (Barabási et al.,
1999).

Beyond the degree distribution, it is also important to
characterize the degree-correlation between neighboring nodes
for large networks of complex structures (Pastor-Satorras et al.,
2001; Newman, 2003a). In general, a network may display
degree-correlations if the wiring probability between the high-
and low-degree nodes statistically significantly differs from the
independent random wirings between nodes. In our work,
the degree-correlation is quantified by the Pearson correlation
coefficient between the in-degrees for pairs of nodes linked by
a directed edge.
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4.2. The Generation of Scale-Free Neuronal
Networks
To generate an SF neuronal network, we first generate the in-
degree (out-degree) of each neuron in the αth population based
on the power-law distribution Pα,in (Pα,out) for α = E, I. For
ease of discussion, we set the first NE nodes in the N-node
network to be excitatory neurons, and those remaining are
inhibitory. Then we generate N in/out-degree pairs (ki, li) for
each neuron, and calculate the sums

∑

i ki and
∑

i li. We use
the method in Newman et al. (2001) to force the conservation
of in-degree and out-degree, i.e.,

∑

i ki =
∑

j lj. To be specific,

when
∑

i ki 6=
∑

j lj, we randomly select a neuron i and

regenerate a new pair of degree (ki, li) from the corresponding
degree distributions. We repeat the procedure until

∑

i ki =
∑

j lj. Then, we further define Ŵi as the ratio of the number of

presynaptic excitatory neurons to that of presynaptic inhibitory
neurons for the ith neuron, so that ki,E = kiŴi/(1+ Ŵi) is
the number of the excitatory incoming connections, and ki,I =
ki/(1+ Ŵi) is the number of the inhibitory incoming connections
for the ith neuron. Various levels of cross-correlations between
the number of excitatory cortical inputs {ki,E} and the number
of inhibitory cortical inputs {ki,I} can be obtained by choosing
different values of {Ŵi}. Finally, we make direct connections in
the network according to {(ki,E, ki,I), li} with the configuration
model (Newman et al., 2001; Newman, 2003b). Note that the
degrees of the connected nodes in such an SF network are
uncorrelated (Aiello et al., 2000; Newman et al., 2001). To
generate an SF network with degree correlation, we use a simple
edge-node reshuffling strategy, which is a simplified version
of the algorithm in Xulvi-Brunet and Sokolov (2005). In our
simulations, unless otherwise specified, the decay exponent is
chosen to be γ = 2.6 in our work, which is within the normal
range of γ for real-world SF networks according to Barabási et al.
(1999).

C
ij
αβ is denoted as the element of the adjacency matrix with

C
ij
αβ = 1 if there is a directed edge from the jth neuron in

the βth population to the ith neuron in the αth population,
where α,β = E, I. If each neuron is connected, on average, to
K presynaptic excitatory neurons and K presynaptic inhibitory
neurons, because each neuron is connected to a large number
of presynaptic neurons in the cortex (Braitenberg and Schüz,
1998), the value of K should be chosen sufficiently large to reflect
this fact of connectivity. In addition, by electrophysiological
recordings from cortical neurons, the probability of connection
is shown to be often rather low, thus yielding a sparse
network (Holmgren et al., 2003). Therefore, the value of K
should be chosen to be much smaller than the size of the
population. As the cells in the primary visual cortex of adult
cats were found experimentally firing much more irregularly in
vivo than the cells in vitro when the same stimulus was used
(passing the same current through the electrode), fluctuations
of the synaptic inputs are particularly important for irregular
spiking (Holt et al., 1996). In light of this, we choose the
scaling of the coupling strength to be of order 1/

√
K, imparting

fluctuations of order one to persist in the large-K limit in the
total synaptic input to a neuron (van Vreeswijk and Sompolinsky,

1996; Vreeswijk and Sompolinsky, 1998; Vogels et al., 2005).
We adopt this scaling for all the neuron models used in this
work.

Next we explain how to find a power-law degree distribution
with the decay exponent γ and the mean connectivity 2K for
the generation of an SF network. Because the network size is
always finite in numerical simulations, the degree of each neuron
varies and has a lower bound denoted as K0 and an upper bound
denoted as K1. Therefore, the power-law distribution takes the
form as

P(k) = Ck−γ for k ∈ [K0,K1],

with a normalization constant C. By the definition of probability
and its mean, we have

K1
∑

k=K0

P(k) = 1,

K1
∑

k=K0

kP(k) = 2K. (7)

Intuitively, for fixed K and γ in an SF network, two parameters
K0 and K1 cannot be simultaneously determined by Equation (7)
since there are three unknowns, C, K0, and K1 and only two
equations in Equation (7). This can be shown as follows.

(1) For γ > 0 and γ 6= 1, 2, Equation (7) can be approximately
reformed as

1 ≈
∫ K1

K0

P(k)dk = C
K
1−γ
1 − K

1−γ
0

1− γ
,

2K ≈
∫ K1

K0

kP(k)dk = C
K
2−γ
1 − K

2−γ
0

2− γ
.

Subsequently, we can obtain the following relationship

2K ≈
1− γ

2− γ
·
(K1/K0)

2−γ − 1

(K1/K0)1−γ − 1
K0. (8)

(2) For γ = 1, Equation (7) can be calculated that

1 ≈
∫ K1

K0

P(k)dk = C ln(K1/K0),

2K ≈
∫ K1

K0

kP(k)dk = C(K1 − K0).

Then, we can obtain

2K ≈
K1/K0 − 1

ln (K1/K0)
K0. (9)

(3) For γ = 2, it can be calculated that

1 ≈
∫ K1

K0

P(k)dk = C
( 1

K0
−

1

K1

)

,

2K ≈
∫ K1

K0

kP(k)dk = ln(K1/K0).

Similarly, we have

2K ≈
ln (K1/K0)

1− K0/K1
K0. (10)
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Then, given the value ofK and γ , we can choose properK0 andK1

following one of Equations (8)–(10) to ensure that the balanced
condition (3) holds. Since the starting point of the power-law
distribution of the degree normalized by the network size from an
experimental observation is about 0.95% (Bonifazi et al., 2009),
we choose K0 ≈ 380 = 0.95% × (4 × 104) accordingly in many
of our simulations, where 4 × 104 is the network size. The value
of K0 is set to be different from 380 only when we investigate the
effect of the network size in Figure 4B. Note that K1 cannot be
larger than the network size.

4.3. The Current-Based I&F Model With
Delta-Pulse Coupling
In our work, the sub-threshold membrane potential of an I&F
neuron in a population obeys the following dynamics (Dayan
et al., 2001; Newhall et al., 2010; Zhou et al., 2010)

dviα
dt

= −gL(v
i
α − ǫR)+ Iiα(t), (11)

where viα is the membrane potential of the ith neuron in the αth
population (α = E, I), gL is the leakage conductance, ǫR is the
resting voltage, and Iiα(t) is the driving current. The voltage viα
evolves according to Equation (11) while it remains below the
firing threshold ǫT . When viα reaches ǫT , the ith neuron is said to
fire a spike, and viα is set to the value of the reset voltage ǫR. Upon
resetting, viα is governed by Equation (11) again. At the same
time, appropriate currents induced by the spike are injected into
all other postsynaptic neurons. We use physiological values for
the parameters gL = 50 s−1, ǫR = −70 mV and ǫT = −55 mV.
Upon non-dimensionalization, we have normalized ǫT = 1.0 and
ǫR = 0.0.

The instantaneous current Iiα(t) injected into the ith neuron of
the αth population has the following form Iiα(t) = IiαE(t)+ IiαI(t),

where IiαI(t) = −JαI
NI
∑

j=1
C
ij
αI

∑

s
δ(t − τ Ijs) is the inhibitory input,

whereas IiαE(t) = fα
∑

s
δ(t − ςα

is ) + JαE
NE
∑

j=1
C
ij
αE

∑

s
δ(t − τEjs ) is

the excitatory input — δ(·) is the Dirac delta function, Jαβ is the
coupling strength from the βth population to the αth population
(α,β = E, I), and fα is the strength of the external Poisson input
to the αth population. The first term in IiαE(t) corresponds to the
current from the external input. The external input of the ith
neuron in the αth population is modeled by a Poisson process
{ςα

is } with rate να . At the time, t = ςα
is , of the sth input spike to

the ith neuron in the αth population, the neuron’s voltage jumps
by the amount of fα . The second term in IiαE(t) and the term in
IiαI(t) correspond to the currents induced by the coupled neurons
in the excitatory and inhibitory populations in the network, in
which {τEjs } is the spike train from the jth neuron in the excitatory

population, {τ Ijs} is the spike train from the jth neuron in the

inhibitory population, and s denotes the sth spike in the train.
In the simulation, the values of parameters in the model are

set as follows: JEE = JIE = 1.0/
√
K, JII = 1.8/

√
K, JEI =

2.0/
√
K, fE = fI = 1.0/

√
K, and νE = ν0K, νI = 0.8ν0K.

We vary the value of ν0 to control the rate of the external input.

To perform the numerical simulation of this I&F model, we
use an event-driven scheme (Brette et al., 2007), with which the
numerical results of dynamics can be obtained up to the machine
accuracy.

4.4. Fokker-Planck Equation for a Single
Neuron
Under a Poisson external input, the spiking events of a neuron
in the network, in general, are not Poissonian, i.e., {τEjs } and

{τ Ijs} in the current Iiα(t) are not a Poisson process for a

fixed neuron j. However, the input to the ith neuron is a
spike train summed over output spike trains from many other
neurons in the network. If the firing event of each neuron is
statistically independent of one another, then the spike train
obtained by summing over a large number of output spike trains
of neurons asymptotically tends to a Poisson process (Cinlar,
1972). In a balanced network, the firing event of each neuron
is extremely weakly correlated with, and nearly independent of,
other neurons (Vreeswijk and Sompolinsky, 1998). Therefore, for
each neuron, the summed incoming spikes from its presynaptic
neurons can be approximated by a Poisson train. Under the
Poisson approximation, we can obtain the Fokker-Planck (FP)
equation corresponding to Equation (11) for each neuron in
the population (Cai et al., 2006). For the ith neuron in the αth
population, we have

∂

∂t
ρi

α =
∂

∂v

[

(gLv− µi
α)ρ

i
α

]

+
σ i

α
2

2

∂2

∂v2
ρi

α , (12)

where ρi
α(v, t) is the probability density at time t of finding the

membrane potential at v of the ith neuron in the αth population.
Here µi

α is the mean total input,

µi
α = fανα + JαEν

i
αE − JαIν

i
αI , (13)

and (σ i
α)

2 is the strength of fluctuations of the total input,

(σ i
α)

2 = f 2α να + J2αEν
i
αE + J2αIν

i
αI . (14)

Note that νiαE and νiαI are the rates of the summed respective
excitatory and inhibitory inputs from other neurons in the
network, fα and να are the strength and rate of the external
Poisson input to the αth population, respectively.

Equation (12) can be cast into the conservation form
∂
∂tρ

i
α(v, t)+ ∂

∂vS
i
α(v, t) = 0, with Siα(v, t) = − (σ i

α)
2

2
∂
∂vρ

i
α − gL

(

v−
µi

α

gL

)

ρi
α being the probability density flux through v at time t. For

Equation (12), we need to specify boundary conditions at v =
−∞, the reset potential ǫR , and the threshold ǫT . The probability
flux through ǫT gives the instantaneous firing rate at t, mi

α(t) =
Siα(ǫT , t). For the I&F neuron, its membrane potential cannot
exceed the threshold, therefore, ρi

α(v, t) = 0 for v ≥ ǫT . At the
reset potential v = ǫR , there is a probability flux coming from
the neuron that just crosses the threshold: what goes out at time
t at the threshold must come back at time t at the reset potential,
thus Siα(ǫ

+
R , t) − Siα(ǫ

−
R , t) = mi

α(t). The natural boundary
condition at v = −∞ is ρi

α tends sufficiently rapidly toward
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zero to be integrable, lim
v→−∞

ρi
α(v, t) = 0 and lim

v→−∞
vρi

α(v, t) = 0.

By definition, ρi
α(v, t) satisfies the normalization condition

∫ VT
−∞ ρi

α(v, t)dv = 1.
The stationary solution of Equation (12) can be obtained

as Brunel (2000)

ρi
α,k =

2mi
α

(σ i
α)

2
exp

(

−
gL

(σ i
α)

2

(

v− µi
α

)2
)

∫ ǫT

v
2(u− ǫR) exp

( gL

(σ i
α)

2

(

u− µi
α

)2
)

du. (15)

Furthermore, by using the normalization condition, the firing
ratemi

α can be obtained as

mi
α = gL

{√
π

∫

ǫT−µiα/gL

σ iα/
√
gL

ǫR−µiα/gL

σ iα/
√
gL

exp(x2)[1+ erf(x)]dx
}−1

, (16)

where erf(x) is the error function.

4.5. Fokker-Planck Equation for a
Homogeneous Network
For the balanced state in homogeneous neuronal networks, one
can reach a probabilistic characterization of the network beyond
the dynamics of a single neuron. Because each neuron in the
balanced state of a homogeneous network can be regarded as
nearly statistically identical in a particular population, the input
spike train of each neuron, which is summed from all presynaptic
neurons, is Poisson with rate Kαmα(t), by noting that each
neuron hasKE presynaptic excitatory neurons andKI presynaptic
inhibitory neurons on average. Here mα(t) is the population-
averaged firing rate for a neuron in the αth population, α = E, I.
Then, one can obtain

∂

∂t
ρα(v, t)+

∂

∂v
Sα(v, t) = 0, (17)

where ρα(v, t) is the probability of finding a neuron in the αth
population whose membrane potential is v at time t (Brunel,

2000), and the probability density flux Sα(v, t) = − σα
2

2
∂
∂vρα

−gL(v− µα

gL
)ρα , where the input is characterized by µα = fανα +

JαEKEmE − JαIKImI and σα
2 = f 2α να + J2αEKEmE + J2αIKImI . By

the same argument for Equation (12), the boundary conditions
for Equation (17) can be similarly obtained.

Similar to the single-neuron case, here the mean firing rate
over the neuronal population can be obtained in a self-consistent
way as

mα = gL

{√
π

∫

ǫT−µα/gL
σα/

√
gL

ǫR−µα/gL
σα/

√
gL

exp(x2)[1+ erf(x)]dx
}−1

. (18)

4.6. Fokker-Planck Equation for a
Scale-Free Network
One can further derive the FP equations for an SF network
with the following structural property — for each neuron

in the network, the ratio of the number of its presynaptic
excitatory neurons to the number of its presynaptic inhibitory
neurons is almost a constant across the population. By
denoting this constant ratio as Ŵ (Ŵ = 1 for the SF
networks in our simulations), and treating all the neurons with
the same number of presynaptic neurons as one ensemble,
we can derive the FP equation for the kth ensemble (the
neuron ensemble with k presynaptic neurons) in the αth
population,

∂

∂t
ρk

α =
∂

∂v

[

(gLv− µk
α)ρ

k
α

]

+
(σ k

α )
2

2

∂2

∂v2
ρk

α ,

where µk
α is the average total input

µk
α = fανα + kJαE

Ŵ

1+ Ŵ
rkE − kJαI

1

1+ Ŵ
rkI , (19)

and (σ k
α )

2 describes the strength of fluctuations of the total input

(σ k
α )

2 = fα
2να + kJαE

2 Ŵ

1+ Ŵ
rkE + kJαI

2 1

1+ Ŵ
rkI . (20)

Here rkE =
∫ K1

K0
T(n|k)mn

Edn and rkI =
∫ K1

K0
T(n|k)mn

I dn are
the presynaptic excitatory and inhibitory neurons’ mean firing
rates for the kth ensemble respectively, T(n|k) is the conditional
probability of finding a directed connection that originates from
an n-node (a neuron with n presynaptic neurons) given that it
ends at a k-node (a neuron with k presynaptic neurons). And K0

(K1) denotes the smallest (largest) degree. In the stationary state,
one can obtain the firing rate of neurons in the k-ensemble as

mk
α = gL

{√
π

∫

ǫT−µkα/gL

σkα/
√
gL

ǫR−µkα/gL

σkα/
√
gL

exp(x2)[1+ erf(x)]dx
}−1

. (21)

When there is no degree correlation between each node,
the conditional probability can be calculated as T(n|k) =
nP(n)/(2K) independent of k, where P(n) is the power-law degree
distribution. Then according to Equations (19–20), µk

α decreases
linearly with the degree k because the network is inhibition
dominant, while (σ k

α )
2 increases linearly with the degree k.

Moreover, for neurons with a large number of presynaptic
connections, i.e., large k, one can find that µk

α ∼ −k and σ k
α ∼√

k. Therefore, ǫR−µk
α/gL≫σ k

α/
√
gL, and ǫT−µk

α/gL≫σ k
α/

√
gL.

The mean firing rate can thus be further approximated as

mk
α ≈

gL(ǫT − µk
α/gL)√

π(ǫT − ǫR)
exp

{

−
(ǫT − µk

α/gL

σ k
α/

√
gL

)2
}

. (22)

Because µk
α ∼ −k and σ k

α ∼
√
k, according to Equation

(22), the firing rate of a neuron mk
α in the kth ensemble decays

exponentially with k. Consequently, neurons with a sufficiently
large degree will possess a very low firing rate which can barely be
detected in numerical results with a finite simulation time, thus
they will be classified to the quiescent group.

Frontiers in Computational Neuroscience | www.frontiersin.org 13 January 2019 | Volume 12 | Article 109

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Gu et al. Balanced Active Core

We comment that, for a homogeneous network with a broad
degree distribution, the group of quiescent neurons also exists. As
the width of the degree distribution becomes broader, the number
of the quiescent neurons becomes larger. This phenomenon can
also be explained from the result of the corresponding FP analysis
in Roxin et al. (2011).
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